Giúp mình bài này nhé:
-Một số đem chia cho 4 dư 1, chia cho 5 cũng dư 1, chia cho 6 cũng dư 1, chia hết cho 7 và nhỏ hơn 400. Tìm số đó?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
Số cần tìm cộng thêm 1 đơn vị thì chia hết cho 2,3,4,5,6,7
Số chia hết 4,5,6,7 thì cũng chia hết cho 2 và 3
Số nhỏ nhất chia hết cho 4,5,6,7 là
4x5x6x7=840
Số nhỏ hơn 2000 lớn hơn 1000 thoả mãn đề bài là
840x2=1680
Gọi số cần tìm là a ( a \(\in\) N* )
Theo đề ra , ta có : a chia cho 4,5,6 dư 1
=> a - 1 \(⋮\)4,5,6 => a - 1 \(\in\) BC( 4,5,6 )
4 = 22
5 = 5
6 = 2 . 3
BCNN( 4,5,6 ) = 22 . 3 . 5 = 60
BC( 4,5,6 ) = { 0;60;120;180;240;300;360;420;... }
Mà : a < 400 => a - 1 < 399
=> a - 1 \(\in\) { 0;60;120;180;240;300;360 }
Mà : a \(⋮\)7 => a - 1 = 300
=> a = 300 + 1 = 301
Vậy số cần tìm là 301
Số đó là : 4 x 5 x 6 + 1 = 121
Đ/S : 121