K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2015

CÁI NÀY NẾU CÓ PHÂN SỐ THÌ LÀM DỄ HƠN NÈ 

3 tháng 1 2020

S = 1.2 + 2.3 + 3.4 + ... + 97.98

=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 97.98.3

           = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 97.98.(99 - 96)

           = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 97.98.99 - 96.97.98

           = 97.98.99 

           = 941 094     

=> S = 941 094 : 3  = 313698

Vậy S = 313698

28 tháng 8 2016

Đặt A = 1.2 + 2.3 + 3.4 + ... + 99.100

3A = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)

3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100

3A = 99.100.101

A = 33.100.101

A = 333300

28 tháng 8 2016

\(A=1.2+2.3+3.4+4.5+...+97.98+98.99+99.100\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(A=\frac{99.100.101}{3}=\frac{999900}{3}=333300\)

27 tháng 4 2023

A = 1 - \(\dfrac{1}{1.2}\) - \(\dfrac{1}{2.3}-\dfrac{1}{3.4}-\dfrac{1}{4.5}...-\dfrac{1}{97.98}\)

A= 1-\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{97.98}\right)\)

A= 1- \(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{97}-\dfrac{1}{98}\right)\)

A= 1- \(\left(\dfrac{1}{1}-\dfrac{1}{98}\right)\)

A=1-  1 + \(\dfrac{1}{98}\)

A= \(\dfrac{1}{98}\)

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Lời giải:

$1-A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{97.98}$

$1-A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{98-97}{97.98}$

$1-A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{97}-\frac{1}{98}$

$=1-\frac{1}{98}$

$\Rightarrow A=\frac{1}{98}$

1 tháng 12 2017

Đặt tổng trên = A

Có : 3A = 1.2.3+2.3.3+....+98.99.3

 = 1.2.3+2.3.(4-1)+.....+98.99.(100-97)

 = 1.2.3+2.3.4-1.2.3+.....+98.99.100-97.98.99

 = 98.99.100

=> A = 98.99.100/3 = 323400

k mk nha

1 tháng 12 2017

Gọi A = 1.2 + 2.3 + .. + 98.99

3A = 1.2.3 + 2.3.3 + ... + 98.99.3

3A = 1.2.3 + 2.3.(4 - 1) + ... + 98.99.(100 - 97)

3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 98.99.100 - 97.98.99

3A = 98.99.100

3A = 970200

A = 323400

DD
22 tháng 4 2022

\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}\)

\(=\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{99-98}{98.99}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}\)

\(=1-\dfrac{1}{99}\)

\(A=\dfrac{2021}{2022}=\dfrac{2022-1}{2022}=1-\dfrac{1}{2022}\)

Có \(2022>99>0\Leftrightarrow\dfrac{1}{99}>\dfrac{1}{2022}\)

Suy ra \(A>B\).

28 tháng 3 2022

\(\dfrac{-4}{99}\)

28 tháng 3 2022

-4/99

 

18 tháng 3 2021

Đặt A=1.98+2.97+3.96+...+96.3+97.2+98.1

       B=1.2+2,3+3.4+...+96.97+97.98+98.99

Ta có: A=1+(1+2)+...+(1+2+3+...+97+98)

              =\(\dfrac{1.2}{2}+\dfrac{2.3}{2}+...+\dfrac{98.99}{3}\)

              =\(\dfrac{1.2+2.3+3.4+4.5+...+98.99}{2}\)=\(\dfrac{B}{2}\)

    =>E=\(\dfrac{B}{2}\):2=\(\dfrac{1}{2}\)