a ) n + 1 / n + 2 và n + 3 / n +4 ( phần bù nha
b ) n / n + 2 và n - 1 / n - 4 ( trung gian nha )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{n}{n+3}\)và \(\frac{n-1}{n+4}\)
Ta có: n / n + 3 = 1 - 1/n + 3
n - 1 / n + 4 = 1 - 1/ n + 4
Mặt khác : 1 / n + 3 > 1 / n + 4 => 1 - 1 / n + 3 > 1 - n + 4
nên n / n + 3 > n - 1 / n + 4
Vậy ...
b) Ko biết làm
c) n / 2n + 1 và 3n + 1 / 6n + 3
Ta có: n / 2n + 1 = 1 - 1 / 2n +1
3n + 1 / 6n + 3 = 3n + 1 / 2 . 3n + 3 = n + 1 / 2n + 3 = 1 - 1/ 2n + 3
Mặt khác: 1/2n + 1 > 1/2n +3 => 1 - 1/2n+1 > 1- 1/2n + 3
nên n / n +1 < 3n + 1/ 6n +2
Vậy ...
phần b ko biết làm nhưng k cho mink nha !
a/ \(\frac{n+1}{n+3}=\frac{n+3-2}{n+3}=1-\frac{2}{n+3}\)và \(\frac{n+3}{n+5}=\frac{n+5-2}{n+5}=1-\frac{2}{n+5}\)
Để so sánh 2 phân số trên,ta phải so sánh \(1-\frac{2}{n+3}\)và \(1-\frac{2}{n+5}\)
=> phải so sánh 2/n+3 và 2/n+5
Ta thấy n+3<n+5=>2/n+3>2/n+5=>1-2/n+3<1-2/n+5=>\(\frac{n+1}{n+3}< \frac{n+3}{n+5}\)
b/A=\(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)\(+...+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{2}-\frac{1}{100}\)
Do 1/100 >0 =>1/2-1/100 <1/2=>A<1/2
Nhớ cho mình k nha
AHIHI ^_^
Tìm \(x\) thế \(x\) nào ở đâu trong bài toán vậy em?
Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)
Nên \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
A. Ta có :
1- n+1/n+2 = 1/n+2 (1)
1 - n+3/n+4 = 1/n+4 (2)
Từ (1) và (2) ;Ta có :
1/n+2 >1/ n+4
Nên n+1/n+2 < n+3/n+4
KL : n+1/n+2 < n+3/n+4