Cho tam giác ABC cân tại A, góc A=20 độ, lấy D trên cạnh AB sao cho AD=BC. Tính góc ACD.
Mọi người tự làm giúp mình nhé, đừng copy trên mạng nha, mình biết chỗ đó đấy :YAHOO! Nên tự làm hộ mik nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại A có C = 450
=> Tam giác ABC vuông cân tại A có AD là tia phân giác
=> AD là đường cao của tam giác ABC vuông cân tại A
BAD = DAC = \(\frac{BAC}{2}\) = \(\frac{90^0}{2}\) = 450
mà ACB = 450 (gt)
=> BAD = ACB
=> 1800 - BAD = 1800 - ACB
=> BAE = BCF
Xét tam giác EAB và tam giác BCF có:
EA = BC (gt)
EAB = BCF (chứng minh trên)
AB = CF (gt)
=> Tam giác EAB = Tam giác BCF (c.g.c)
=> EB = BF (2 cạnh tương ứng)
BEA = FBC (2 góc tương ứng)
=> BEA + EBC = FBC + EBC
mà BEA + EBC = 900 (Tam giác DEB vuông tại D)
=> FBC + EBC = 900
=> BE _I_ BF
a: góc A=180-60-50=70 độ
Vì góc C<góc B<góc A
nên AB<AC<BC
b: Xét tứ giác DEBC co
A là trung điểm chung của DB và EC
nên DEBC là hình bình hành
=>DE=BC=6cm
c: Vì DEBC là hình bình hành
nên DE//BC
Bài 1:
a) Vì AE // BC nên góc AEB = EBC ( so le trong ) (1)
mà góc ABE = EBC ( BE là tia phân giác của góc ABC ) (2)
nên từ (1) và (2) suy ra góc AEB = ABE
mà 2 góc này là 2 góc đáy
=> ΔABE là tam giác cân
b) Do góc ABE = EBC = 50:2 = 25 độ
nên góc ABE = AEB = 25 độ
Ta có: ABE + AEB + BAE = 180 độ ( tc tổng 3 góc trong 1 tg )
=> 25 + 25 + BAE = 180
=> BAE = 130 độ.
Bài 2:
a) Vì ΔABC cân tại A nên góc ABC = ACB
mà góc ABC + ACB = 180 - BAC
=> góc ABC = 180 - BAC /2 (1)
Do AD = AE nên ΔADE cân tại A
được góc ADE = AED
mà góc ADE + AED = 180 - BAC
=> ADE = 180 - BAC/2 (2)
Từ (1) và (2) suy ra góc ABC = ADE
mà 2 góc này ở vị trí đồng vị => DE//BC
b) Ta có: AD + DB = AB
AE + EC = AC
mà AD = AE ( gt); AB = AC (theo câu a)
=> DB = EC
Xét ΔMBD và ΔMCE có:
DB = CE ( chứng minh trên )
Góc ABC = ACB ( theo câu a )
MB = MC ( suy từ gt)
=> ΔMBD = ΔMCE ( c.g.c )
c) Lại do ΔMBD = ΔMCE (theo câu b)
=> MD = ME (2 cạnh tương ứng)
Xét ΔAMD và ΔAME có:
AD = AE (gt)
AM chung
MD = ME ( cm trên )
=> ΔAMD = ΔAME ( c.c.c )
Chúc bạn học tốtNgân Phùng
Sửa lại bài 3:
Giải:
Vì tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Xét góc ngoài \(\widehat{xAC}=\widehat{B}+\widehat{C}\)
\(\Rightarrow\frac{1}{2}\widehat{xAC}=\widehat{C}\)
\(\Rightarrow\widehat{A_1}=\widehat{C}\)
Mà 2 góc trên ở vị trí so le trong nên Am // BC
Vậy Am // BC
(Bạn tự vẽ hình giùm)
a/ Ta có \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta ABC\)cân tại A)
=> 180o - \(\widehat{ABC}\)= 180o - \(\widehat{ACB}\)
=> \(\widehat{ABD}=\widehat{ACE}\)
\(\Delta ABD\)và \(\Delta ACE\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD = CE (gt)
=> \(\Delta ABD\)= \(\Delta ACE\)(c - g - c) => AD = AE (hai cạnh tương ứng) => \(\Delta ADE\)cân tại A (đpcm)
b/ Mình xin chỉnh lại đề: Kẻ \(BH\perp AD\); \(CK\perp AE\). Chứng minh rằng: AH = AK.
\(\Delta BHD\)vuông và \(\Delta CKE\)vuông có: BD = CE (gt)
\(\widehat{D}=\widehat{E}\)(\(\Delta ADE\)cân tại A)
=> \(\Delta BHD\)vuông = \(\Delta CKE\)vuông (cạnh huyền - góc nhọn) => HD = KE (hai cạnh tương ứng)
và AD = AE (\(\Delta ADE\)cân tại A)
=> AD - HD = AE - KE
=> AH = AK (đpcm)
Từ D kẻ đường // BC và trên nó lấy E (E và D nằm ở 2 bên AC) sao cho
góc DAE = 80 độ. Ta có tam giác EAD cân tại E (góc DAE = góc ADE = 80 độ)
2 tam giác cân ABC và EAD có cạnh đáy bằng nhau và góc ở đáy bằng nhau
(= 80 độ) nên bằng nhau (g.c.g)
=> EA = ED = AC. Tam giác cân ACE có góc CAE = 60 độ (= 80 - 20)
nên là tam giác đều => EC = EA = ED => tam giác EDC cân tại E
=> góc ở đỉnh: góc CED = góc CEA - góc DEA = 60 - 20 = 40 độ
=> góc ở đáy: góc CDE = (180 - 40)/2 = 70 độ
Góc CDB = 180 - góc ADE - góc EDC = 180 - 80 - 70 = 30 độ
Tks bạn nha Hello