Chứng tỏ đa thức sau vô nghiệm
a, x\(^2+1\)
b, x\(^2+3x+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)\(Cho\)\(x^2+3=0\)
\(x^2\) \(=0-3\)
\(x^2\) \(=-3\)( vô lý )
Vì: Mũ chẵn chuyển thành số âm
=> Đa thức vô nghiệm
\(b)\)\(Cho\)\(-3x^4-5=0\)
\(-3x^4\) \(=0+5\)
\(-3x^4\) \(=5\)
\(x^4\) \(=5:\left(-3\right)\)
\(x^4\) \(=\frac{-5}{3}\)( Vô lý )
Vì: Mũ chẵn chuyển thành số không âm
=> Đa thức vô nghiệm
a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9
⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2
b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7
A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1
c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0
d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0
⇒ H(x) vô nghiệm
a) Ta có : \(4x^2-10x+9=0\)
\(\Rightarrow\left(2x\right)^2-2.2x.\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{11}{2}=0\)
\(\Rightarrow\left(2x-\frac{5}{2}\right)^2+\frac{11}{2}=0\)(vô lý)
\(\Rightarrow4x^2-10+9\)vô nghiệm(đpcm)
b) Ta có: \(-1+x-x^2=0\)
\(\Rightarrow\left(-1+x-x^2\right).\left(-1\right)=0\)
\(\Rightarrow x^2-x+1=0\)
\(\Rightarrow x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)(vô lý)
\(\Rightarrow-1+x-x^2\) vô nghiệm(đpcm)
Vì \(\left(x-5\right)^2\) \(\ge0\) nên \(\left(x-5\right)^2+1\ge1\)
Vậy đa thức trên vô nghiệm.
Mình chỉ trả lời: vì tại x=a bất kì đều có giá trị khác 0 nên (x-5)^2+1 vô nghiệm
a) Ta có \(x^2+2x+2=\left(x^2+2x+1\right)\)\(+1=\left(x+1\right)^2+1\)Ma \(\left(x+1\right)^2\ge0\forall x\)
Nen \(\left(x+1\right)^2+1>0\). Vậy đa thức trên vô nghiệm
b) \(-x^2+2x-3=\)\(-\left(x^2-2x+1\right)-2\)\(=-\left(x-1\right)^2-2\)
Ma \(-\left(x-1\right)^2\le0\forall x\)Nen \(-\left(x-1\right)^2-2< 0\)
Vậy đa thức trên vô nghiệm
a) 4x2+4x+2
=4x2+2x+2x+2
=2x.(2x+1)+2x+1+1
=2x.(2x+1)+(2x+1)+1
=(2x+1)2+1
Vì (2x+1)2 luôn lớn hơn hoặc = 0 nên (2x+1)2+1>0, vô nghiệm
b) x2+x+1
\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\), vô nghiệm
Phần c để tớ nghĩ đã
a/ Ta có: \(x^2\ge0\forall x\Rightarrow x^2+1\ge1>0\)
=> vô nghiệm (đpcm)
b/ đề sai nha
Câu b đề đúng mà bạn