K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)

Từ (1)(2) => đpcm

13 tháng 8 2018

hinh nhu sai de ban oi

28 tháng 9 2015

\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)(Đpcm)

\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(Đpcm)

a)\(\frac{ab}{cd}=\frac{bk.b}{dk.b}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)

từ\(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

7 tháng 11 2017

Từ giả thiết: \(\frac{a}{b}=\frac{c}{d}\)=>ad=bc                                                  (1)

Ta có: ab(c2-d2)=abc2-abd2=acbc-adbd                                             (2)

          cd(a2-b2)=a2cd-b2cd=acad-bcbd                                             (3)

Từ (1) ,(2),(3)=> ab(c2-d2)=cd(a2-b2)=>\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)            (đpcm)

(a² + b²) / (c² + d²) = ab/cd 
<=> (a² + b²)cd = ab(c² + d²) 
<=> a²cd + b²cd = abc² + abd² 
<=> a²cd - abc² - abd² + b²cd = 0 
<=> ac(ad - bc) - bd(ad - bc) = 0 
<=> (ac - bd)(ad - bc) = 0 
<=> ac - bd = 0 hoặc ad - bc = 0 
<=> ac = bd hoặc ad = bc 
<=> a/b = d/c hoặc a/b = c/d (đpcm)

24 tháng 7 2019

Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)

\(\Rightarrow\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\frac{ab}{cd}\)

\(\Rightarrow\frac{c\left(a+b\right)}{a\left(c+d\right)}=\frac{b\left(c+d\right)}{d\left(a+b\right)}=\frac{ca+cb}{ac+ad}=\frac{bc+db}{da+db}=\frac{ca-bd}{ca-bd}=1\)

\(\Rightarrow ca+cb=ac+ad\Rightarrow cb=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)

24 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) thì \(a=bk,c=dk\).

\(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\\ \frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)

Do đó: \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

24 tháng 10 2016

thanks, bạn giúp mik nhiều lần rồi ^^^^ cảm ơn

10 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(đpcm\right)\)

10 tháng 11 2018

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Khi đó : \(\frac{\left(bk\right)^2-b^2}{kb^2}=\frac{\left(dk\right)^2-d^2}{kd^2}\)

\(\Rightarrow\frac{b^2.k^2-b^2}{kb^2}=\frac{d^2.k^2-d^2}{kd^2}\)

\(\Rightarrow\frac{b^2\left(k^2-1\right)}{kb^2}=\frac{d^2\left(k^2-1\right)}{kd^2}\)

\(\Rightarrow\frac{k^2-1}{k}=\frac{k^2-1}{k}\left(đpcm\right)\)

https://bingbe.com/search?category=question&q=Cho%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20a%20%2Fb%20%3D%20c%20%2Fd%20.%C2%A0Ch%E1%BB%A9ng%20minh%20c%C3%B3%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20sau%20%3A%0A%0A(%20a%20%2B%20c%C2%A0)2%C2%A0%2F%20(%20b%20%2B%20d%20)2%C2%A0%3D%20a2%C2%A0%20%2B%C2%A0%C2%A0c2%C2%A0%2F%20b2%20%C2%A0%2B%20d%C2%A02%C2%A0%0A%0A(%20Gi%E1%BA%A3%20thi%E1%BA%BFt%20c%C3%A1c%20t%E1%BB%89%20s%E1%BB%91%20%C4%91%E1%BB%81u%20c%C3%B3%20ngh%C4%A9a%20)%C2%A0%0A%0A%C2%A0

Xem ở lick này nhé (mình gửi cho)

Học tốt!!!!!!!!!!!!!

28 tháng 7 2019

@@ chị linh Link dài vậy giải lun phải hơn không