K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 12 2020

\(\Leftrightarrow4\left(2x^2+1\right)+10x=5y^2\)

Do \(10x\)\(5y^2\) đều chia hết cho 5 \(\Rightarrow2x^2+1⋮5\)

- Nếu \(x⋮5\Rightarrow2x^2+1\) chia 5 dư 1 (ktm)

- Nếu x chia 5 dư 1 hoặc 4 \(\Rightarrow x^2\) chia 5 dư 1 \(\Rightarrow2x^2+1\) chia 5 dư 3 (ktm)

- Nếu x chia 5 dư 2 hoặc 3 \(\Rightarrow x^2\) chia 5 dư 4 \(\Rightarrow2x^2+1\) chia 5 dư 4 (ktm)

Vậy không tồn tại x thỏa mãn hay pt đã cho ko có nghiệm nguyên

13 tháng 10 2019

\(5y^2+3y=-2x^2+8x=8-\left(2x^2-8x+8\right)=8-2\left(x-2\right)^2\le8\)<=> \(5y^2+3y-8\le0< =>\left(5y+8\right)\left(y-1\right)\le0< =>\frac{-8}{5}\le y\le1\)

y nguyên => y = -1; 0; 1

y=-1 => \(2x^2+5-8x-3=0< =>x^2-4x+1=0\)(không có nghiệm x nguyên)

y=0 =>\(2x^2+0-8x-0=0< =>2x^2-8x=0< =>\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

y=1 =>\(2x^2+5-8x+3=0< =>x^2-4x+4=0< =>x=2\)

vậy pt có nghiệm (x;y) = (0;0)  (4;0)  (2;1)

27 tháng 11 2016

chiu@@@@@@@@@@@@@@@@

16 tháng 9 2016

Ta có : \(x^4+2x^3+8x^2+10x+15=0\)

\(\Leftrightarrow\left(x^4+2x^3+3x^2\right)+\left(5x^2+10x+15\right)=0\)

\(\Leftrightarrow x^2\left(x^2+2x+3\right)+5\left(x^2+2x+5\right)=0\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+5\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+2x+3=0\\x^2+5=0\end{array}\right.\)

Ta có : \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2>0\) 

=> PT này vô nghiệm.

\(x^2+5>0\) => PT này vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

28 tháng 10 2018

Coi phương trình đã cho là phương trình bậc hai a ẩn x, y là tham số. Dùng điều kiện có  nghiệm cuả phương trình để giải

10 tháng 8 2020

pt <=> \(16x^2+32xy+46y^2+32x-88y=2360\)

<=> \(\left(4x+4y+4\right)^2+30y^2-120y+120=2496\)

<=> \(\left(4x+4y+4\right)^2+30\left(y^2-4y+4\right)=2496\)

<=> \(8\left(x+y+1\right)^2+15\left(y-2\right)^2=2496\)

Có: \(15\left(y-2\right)^2\)là 15 lần của 1 SCP

=> \(0\le\left(y-2\right)^2\le\frac{2496}{15}\)

Mà \(\left(y-2\right)^2\)là 1 SCP 

=> \(\left(y-2\right)^2=0^2;1^2;...;12^2\)

Đến đây bạn xét từng trường hợp là ra rùi !!!!!!