K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 2 2019

\(\dfrac{1+cos2a-sin2a}{1+cos2a+sin2a}=\dfrac{2cos^2a-2sina.cosa}{2cos^2a+2sinacosa}\)

\(=\dfrac{2cosa\left(cosa-sina\right)}{2cosa\left(cosa+sina\right)}=\dfrac{cosa-sina}{cosa+sina}=\dfrac{\sqrt{2}sin\left(\dfrac{\pi}{4}-a\right)}{\sqrt{2}cos\left(\dfrac{\pi}{4}-a\right)}=tan\left(\dfrac{\pi}{4}-a\right)\)

\(\dfrac{1+cos2a-cosa}{sin2a-sina}=\dfrac{2cos^2a-cosa}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)

2 tháng 11 2021

\(a,A=\left(\cos^220^0+\cos^270^0\right)+\left(\cos^240^0+\cos^250^0\right)\\ A=\left(\cos^220^0+\sin^220^0\right)+\left(\cos^240^0+\sin^240^0\right)=1+1=2\\ b,B=\left(\cos^2\alpha\right)^3+\left(\sin^2\alpha\right)^3+3\sin^2\alpha\cdot\cos^2\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)\\ B=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)

\(\cot\alpha=\dfrac{1}{2}\)

\(\sin\alpha=\dfrac{kề}{\sqrt{5}kề}=\dfrac{\sqrt{5}}{5}\)

\(\cos\alpha=\sqrt{1-\dfrac{5}{25}}=\dfrac{2\sqrt{5}}{5}\)

3 tháng 5 2022

MN K BT?

26 tháng 8 2019

Giải bài 4 trang 37 sgk Đại số 11 | Để học tốt Toán 11

+ Xét cos x = 0 ⇒ sin2x = 1 – cos2x = 1

(1) trở thành 1 = 0 (Vô lý).

+ Xét cos x ≠ 0, chia cả hai vế cho cos2x ta được:

Giải bài 4 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình có tập nghiệm 

Giải bài 4 trang 37 sgk Đại số 11 | Để học tốt Toán 11 (k ∈ Z)

\(cos^2\left(a-b\right)-sin^2\left(a+b\right)\)

\(=\left(cosa.cosb+sina.sinb\right)^2-\left(sina.cosb+cosa.sinb\right)^2\)

\(=cos^2a.cos^2b+sin^2a.sin^2b-sin^2a.cos^2b-cos^2a.sin^2b\)

\(=cos^2b\left(cos^2a-sin^2a\right)-sin^2b\left(cos^2a-sin^2a\right)\)

\(=\left(cos^2b-sin^2b\right)\left(cos^2a-sin^2a\right)\)

\(=cos2a.cos2b\left(dpcm\right)\)

14 tháng 10 2023

 Sửa lại đề bài là \(cos\left(15^o+2\alpha\right)\) (chứ không phải là \(cos^2\left(15^o+2\alpha\right)\) nhé)

 Ta có \(VT=sin^2\left(45^o+\alpha\right)-sin^2\left(30^o-\alpha\right)-sin15^o.cos^2\left(15^o+2\alpha\right)\)

\(=\left[sin\left(45^o+\alpha\right)+sin\left(30^o-\alpha\right)\right]\left[sin\left(45^o+\alpha\right)-sin\left(30^o-\alpha\right)\right]-sin15^ocos^2\left(15^o+2\alpha\right)\)

\(=2sin\left(\dfrac{75^o}{2}\right)cos\left(\dfrac{2\alpha+15^o}{2}\right).2cos\left(\dfrac{75^o}{2}\right)sin\left(\dfrac{2\alpha+15^o}{2}\right)-sin15^ocos^2\left(15^o+2\alpha\right)\)

\(=sin75^o.sin\left(2\alpha+15^o\right)-sin15^o.cos^2\left(2\alpha+15^o\right)\)

\(=sin\left(2\alpha+15^o-15^o\right)\) (dùng \(sin\left(\alpha-\beta\right)=sin\alpha.cos\beta-sin\beta.cos\alpha\))

\(=sin2\alpha=VP\)

Vậy đẳng thức được chứng minh.

14 tháng 10 2023

Mấy chỗ kia bạn sửa hết \(cos^2\left(15^o+2\alpha\right)\) thành \(cos\left(15^o+2\alpha\right)\) nhé.

28 tháng 7 2016

\(sin^2\alpha+cos^2\alpha=1\Rightarrow cos\alpha=\sqrt{1-sin^2\alpha}=\sqrt{1-\left(0,6\right)^2}=\frac{4}{5}\)

\(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{0,6}{\frac{4}{5}}=\frac{3}{4}\)

\(cot\alpha=\frac{1}{tan\alpha}=\frac{1}{\frac{3}{4}}=\frac{4}{3}\)

8 tháng 8 2021

a) sin230 độ - sin240 độ - sin250 độ + sin2 60 độ

= cos260o - cos250o - sin250o + sin260o

= (cos260o + sin260o) - (cos250o + sin250o)

= 1 - 1 = 0

b) cos225 độ - cos235độ + cos245 độ -cos2 55 độ + cos2 65 độ

= sin265o - sin255o + cos245o - cos255o + cos265o

= (sin265o + cos265o) - (sin255o + cos255o) + cos245o

=  1 - 1 +1/2

= 1/2