K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

Làm từng phần nha bạn

\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{298\cdot301}+x=\frac{299}{301}\)

Đặt \(A+x=\frac{299}{301}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{298}-\frac{1}{301}\)

\(A=1-\frac{1}{301}\)

\(A=\frac{300}{301}\)

=> \(\frac{300}{301}+x=\frac{299}{301}\)

\(x=\frac{299-300}{301}\)

\(x=-\frac{1}{301}\)

8 tháng 8 2018

\(A=5\cdot\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{301\cdot304}\right)\)

\(\frac{3A}{5}=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{301\cdot304}\)

\(\frac{3}{5}\cdot A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{301}-\frac{1}{304}\)

\(\frac{3}{5}\cdot A=1-\frac{1}{304}\)

\(\frac{3}{5}\cdot A=\frac{303}{304}\)

\(A=\frac{505}{304}\)

9 tháng 4 2017

a)\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{46}-\frac{1}{56}\)

=\(1-\frac{1}{56}=\frac{55}{56}\)

b)\(A.\frac{1}{3}=\frac{1}{3}.\left(\frac{3}{1.2}+\frac{3}{2.3}+....+\frac{3}{99.100}\right)\)

\(\frac{1}{3}A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{3}{99.100}\)

=> \(\frac{1}{3}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(\frac{1}{3}A=1-\frac{1}{100}=\frac{99}{100}\)

=> \(A=\frac{99}{100}.3=\frac{297}{100}\)

c)\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)

=\(1-\frac{1}{103}=\frac{102}{103}\)

d) \(\frac{3}{5}C=\frac{3}{5}.\left(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\right)\)

=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\)

=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{103}\)

=\(1-\frac{1}{103}=\frac{102}{103}\)

=>\(C=\frac{102}{103}.\frac{5}{3}=\frac{170}{103}\)

e) \(\frac{4}{7}D=\frac{4}{7}.\left(\frac{7}{1.5}+\frac{7}{5.9}+...+\frac{7}{101.105}\right)\)

=\(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{101.105}\)

=\(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\)

=\(1-\frac{1}{105}=\frac{104}{105}\)

=< D=\(\frac{104}{105}.\frac{7}{4}=\frac{26}{15}\)

9 tháng 4 2017

a) \(P=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...\dfrac{10}{46.56}\)

\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...\dfrac{1}{46}-\dfrac{1}{56}\)

\(P=1-\dfrac{1}{56}\)

\(P=\dfrac{55}{56}\)

b) \(A=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{99.100}\)

\(A=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)

\(A=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=3\left(1-\dfrac{1}{100}\right)\)

\(A=3.\dfrac{99}{100}\)

\(A=\dfrac{297}{100}\)

c) \(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\)

\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(B=1-\dfrac{1}{103}\)

\(B=\dfrac{102}{103}\)

d) \(C=\dfrac{5}{1.4}+\dfrac{5}{4.7}+\dfrac{5}{7.10}+...+\dfrac{5}{100.103}\)

\(C=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\right)\)

\(C=\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(C=\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)

\(C=\dfrac{5}{3}.\dfrac{102}{103}\)

\(C=\dfrac{170}{103}\)

e) \(D=\dfrac{7}{1.5}+\dfrac{7}{5.9}+\dfrac{7}{9.13}+...+\dfrac{7}{101.105}\)

\(D=\dfrac{7}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{101.105}\right)\)

\(D=\dfrac{7}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{101}-\dfrac{1}{105}\right)\)

\(D=\dfrac{7}{4}\left(1-\dfrac{1}{105}\right)\)

\(D=\dfrac{7}{4}.\dfrac{104}{105}\)

\(D=\dfrac{26}{15}\)

8 tháng 6 2018

f,F=3. (1/2 .3 + 1/3.4 +...+ 1/99.100)

    = 3. (1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/99 - 1/100

    = 3. (1/2 - 1/100)

    = 3. 49/100

    = 147/100

g, G = 5/3. (3/1.4 + 3/4.7 +...+ 3/61.64)

        = 5/3 . (1 - 1/4 + 1/4 - 1/7 +...+ 1/61 - 164

        = 5/3 . (1-1/64)

        = 5/3 . 63/64

        = 105/64

8 tháng 6 2018

f,    \(F=\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{99.100}\)

\(\Leftrightarrow F=3\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(\Leftrightarrow F=3\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Leftrightarrow F=3\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\Leftrightarrow F=3\left(\frac{49}{100}\right)=\frac{147}{100}\)

g,    \(G=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{61.64}\)

\(\Leftrightarrow G=5\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{61.64}\right)\)

\(\Leftrightarrow G=5.\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{61}-\frac{1}{64}\right)\)

\(\Leftrightarrow G=\frac{5}{3}\left(1-\frac{1}{64}\right)\)

\(\Leftrightarrow G=\frac{5}{3}.\frac{63}{64}=\frac{105}{64}\)

8 tháng 6 2018

\(G=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{61.64}\)

\(\Rightarrow G=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+..+\frac{3}{61.64}\right)\)

\(\Rightarrow G=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+..+\frac{1}{61}-\frac{1}{64}\right)\)

\(\Rightarrow G=\frac{5}{3}.\left(1-\frac{1}{64}\right)=\frac{5}{3}.\frac{63}{64}\)

\(\Rightarrow G=\frac{5.63}{3.64}=\frac{5.21.3}{3.64}=\frac{5.21}{64}=\frac{105}{64}\)

27 tháng 4 2023

5/1.4 + 5/4.7 + 5/7.10 + ... + 5/97.100

= 5/3 . (3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100)

= 5/3 . (1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/97 - 1/100)

= 5/3 . ( 1 - 1/100)

= 5/3 . 99/100

= 33/20

17 tháng 11 2019

b) S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

18 tháng 7 2018

= 1-1/4+1/4-1/7+1/7-1/10 +...+ 1/x -1/ x+3

= 1 -1/x+3

= x+2 / x+3

Câu này dễ mà.

5 tháng 4 2015

Gọi biểu thức sau là A, ta có:

A=(5/1.4)+(5/4.7)+(5/7.10)+...+(5/91.94)

2A=(10/1.4)+(10/4.7)+(10/7.10)+...+(10/91.94)

2A=5/1-5/4+5/4-5/7+5/7-5/10+...+5/91-5/94

2A=5/1-5/4+5/4-5/7+5/7-5/10+...+5/91-5/94

2A=5/1-5/94

2A=465/94

=>A=465/94:2

=>A= tự tính nhé

 

5 tháng 4 2015

\(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{91.94}=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{91.94}\right)\)

\(=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{94}\right)\)

\(=\frac{5}{3}.\left(1-\frac{1}{94}\right)=\frac{5}{3}.\frac{93}{94}=\frac{155}{94}\)

2 tháng 10 2023

`#3107.101107`

1.

a)

`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`

`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`

`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`

`= 1/3* (1 - 1/103)`

`= 1/3*102/103`

`= 34/103`

b)

`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`

`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`

`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`

`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`

`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`

`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`

`= -1/2 * (1 - 1/101)`

`= -1/2*100/101`

`= -50/101`

2.

`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`

`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`

`= 1-1/100`

`= 99/100`