K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

b) S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

25 tháng 9 2020

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\) (1)

=> \(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3};\frac{2}{2.3.4}=\frac{1}{2.3}+\frac{1}{3.4};...;\frac{2}{98.99.100}=\frac{1}{98.99}-\frac{1}{99.100}\)(2)

Thay (2) vào (1), ta được

\(2S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{9900}\)

= \(\frac{4949}{9900}\)

=> \(S=\frac{4949}{9900}:2=\frac{4949}{19800}\)

Chúc bạn học tốt banhqua

12 tháng 8 2015

B = \(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{301.304}\)

B = \(\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{301}-\frac{1}{304}\right)\)

B = \(\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{304}\right)\)

B = \(\frac{1}{3}.\frac{75}{304}\)

B = \(\frac{25}{304}\)

12 tháng 8 2015

\(B=\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{301.304}\right):3\)

\(\Rightarrow B=\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{301}-\frac{1}{304}\right):3\)

\(\Rightarrow B=\left(\frac{1}{4}-\frac{1}{304}\right):3\)

\(\Rightarrow B=\frac{75}{304}:3=\frac{25}{304}\)

2 tháng 10 2023

`#3107.101107`

1.

a)

`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`

`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`

`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`

`= 1/3* (1 - 1/103)`

`= 1/3*102/103`

`= 34/103`

b)

`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`

`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`

`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`

`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`

`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`

`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`

`= -1/2 * (1 - 1/101)`

`= -1/2*100/101`

`= -50/101`

2.

`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`

`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`

`= 1-1/100`

`= 99/100`

19 tháng 7 2016

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=>2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{98.99.100}\)

Dễ dàng CM đẳng thức phụ sau : \(\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\)

Áp dụng vào tính 2B,ta có:

\(2B=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+....+\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}=>B=\frac{4949}{9900}:2=\frac{4949}{19800}\)

Vậy.....

19 tháng 7 2016

1/1.2.3 + 1/2.3.4 + .... + 1/98.99.100

= 1/2(1/1.2-1/2.3) + 1/2(1/2.3-1/3.4) + ..... + 1/2(1/98.99-1/99.100)

= 1/2(1/1.2-1/2.3+1/2.3-....+1/98.99-1/99.100)

= 1/2(1/2 - 1/9900)

= 1/2(4950/9900 - 1/9900)

= 1/2. 4949/9900

= 4949/19800

4 tháng 1 2019

Bạn cho sai đề rồi ! 

Sửa : Chứng tỏ : \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{4949}{9900}\)

Ta có :  \(VT=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

 \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(=\frac{99.100-2}{2.99.100}\)

\(=\frac{4949}{9900}=VP\)

Study well ! >_<

8 tháng 7 2016

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)

=>\(3\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{125}{376}\)

=>\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{375}{376}\)

=>\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{375}{376}\)

=>\(1-\frac{1}{x+3}=\frac{375}{376}\)

=>\(\frac{1}{x+3}=1-\frac{375}{376}\)

=>\(\frac{1}{x+3}=\frac{1}{376}\)

=>x+3=376

=>x=376-3

=>x=373

Vậy x=373

16 tháng 4 2023

1/1+4 +1/4×7 +1/7×10+.....+1/x×(x+3)=16/49