Cho tam giác ABC có số đo của các góc (tính theo độ) là số nguyên và \(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}\). Tính GTLN của \(\widehat{A}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tống các góc trong của lục giác bằng (6-2)180độ=720độ
Đặt A-B=B-C=C-D=D-E=E-F=a, ta có:
A+BC+D+E+F=720độ
=>A(A-a)+(A-2a)+(A-3a)+(A+4a)+(A-5a)=720độ
=>6A-15a=720độ=>2A=5a+240độ
Với A=175độ thì a=22độ. Già trị lớn nhất của A là 175độ
Do A là số tự nhiên và chia hết cho 5 nên A<hoặc=175độ
Tại sao A là stn và chia hết cho 5 thì nhỏ hơn hoặc bằng 175 ạ ?
Trong tam giác ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \)
Mà số đo ba góc \(\widehat A,\widehat B,\widehat C\) của tam giác ABC tỉ lệ với 5;6;7 nên \(\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7} = \dfrac{{\widehat A + \widehat B + \widehat C}}{{5 + 6 + 7}} = \dfrac{{180^\circ }}{{18}} = 10^\circ \\ \Rightarrow \widehat A = 10^\circ .5 = 50^\circ \\\widehat B = 10^\circ .6 = 60^\circ \\\widehat C = 10^\circ .7 = 70^\circ \end{array}\)
Vậy số đo 3 góc \(\widehat A,\widehat B,\widehat C\) lần lượt là \(50^\circ ;60^\circ ;70^\circ \)
S2= p(p-AB)(p-AC)(p-BC) *
mà p=(a+b+c):2
=> p= (7+9+12):2
=> p= 14 (đvđđd)
*<=> S2=14(14-7)(14-9)(14-12)
<=>S=\(\sqrt{\left(980\right)}\)
<=> S=\(14\sqrt{5}\)
S= (abc):4R => S=(7x9x12):4R => S=756:4R
=> R=6
S=pr
=> S=14r
=> r= \(\sqrt{\left(5\right)}\)
Tính số đo góc A của tam giác ABC biết \(\widehat{A}-\widehat{B}=22^o;\widehat{B}-\widehat{C}=22^o\)
Xét tam giác ABC có:góc A+góc B+góc C=180 độ(tổng 3 góc trong tam giác)
\(\Rightarrow\)góc A+góc B=180 độ-góc C
\(\Rightarrow\)góc B+góc C=180 độ-góc A
Mà góc A-góc B=22 độ
\(\Rightarrow\)góc A=\(\frac{\text{180 độ-góc C+22 độ}}{2}\)
\(\Rightarrow\)góc B=\(\frac{\text{180 độ-góc C+22 độ}}{2}-22độ\left(1\right)\)
Mà góc B-góc C=22 độ
\(\Rightarrow\)góc B=\(\frac{\text{180 độ-góc A+22 độ}}{2}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\)\(\frac{\text{180 độ-góc C+22 độ}}{2}-22độ=\frac{\text{180 độ-góc A+22 độ}}{2}\)
\(\Rightarrow\)\(\frac{\text{180 độ-góc C+22 độ-44độ}}{2}=\frac{\text{180 độ-góc A+22 độ}}{2}\)
\(\Rightarrow\)góc C-22 độ=góc A+22 độ
\(\Rightarrow\)góc A=góc C+44 độ
\(\Rightarrow\)góc B=góc C+22 độ
Xét tam giác ABC có:góc A+góc B+góc C=180 độ(tổng 3 góc trong tam giác)
Hay góc C+44 độ+góc C+22 độ+góc C=180 độ
3.góc C+66 độ=180 độ
góc C=\(\frac{180độ-66độ}{3}\)
góc C=38 độ
\(\Rightarrow\)góc A=38 độ +44 độ
góc A=82 độ
Ta có :
A+B+C=180(tính chất của một tam giác)
⇒A=180-B-C
⇒A=180-20
⇒A=160
vì tia phân giác của góc A cắt BC tại D nên A1=A2=\(\dfrac{160}{2}\)=80
\(\Leftrightarrow\)D1=80
Vì góc D1 và góc D2 là 2 góc kề bù nên D1+D2=180
mà góc D1=80
\(\Rightarrow\)D2=180-80
\(\Rightarrow\)D2=100
Vay : D1=80, D2=100
mk ko viết đc kí hiệu góc và độ mong mọi người thông cảm
a: \(\widehat{C}=180^0-40^0-80^0=60^0\)
b: \(\dfrac{S_{ABC}}{S_{A'B'C'}}=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
\(1,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \text{Mà }\widehat{A}=\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=\dfrac{180^0}{3}=60^0\\ 2,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}=110^0\\ \text{Mà }\widehat{B}-\widehat{C}=10^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(110^0+10^0\right):2=60^0\\\widehat{C}=60^0-10^0=50^0\end{matrix}\right.\)
Vì \(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}\) nên \(\widehat{A}-2\widehat{B}+\widehat{C}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}-2\widehat{B}+\widehat{C}=0^0\left(1\right)\\\widehat{A}+\widehat{B}+\widehat{C}=180^0\left(2\right)\end{matrix}\right.\)
Trừ \(\left(2\right)\) cho \(\left(1\right)\), ta được \(3\widehat{B}=180^0\Rightarrow\widehat{B}=60^0\)
\(\Rightarrow\widehat{A}+\widehat{C}=120^0\)
Vậy GTLN của \(\widehat{A}\) là \(119^0\) vì \(\widehat{C}>0\)
$\widehat{ABC}$