chứng minh bất đẳng thức \(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)vớia>0;b< 0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức \(4x^3+4y^3\ge\left(x+y\right)^3\) với x, y > 0, ta được:
\(4a^3+4b^3\ge\left(a+b\right)^3\); \(4b^3+4c^3\ge\left(b+c\right)^3\) ; \(4c^3+4a^3\ge\left(c+a\right)^3\).
Cộng từng vế 3 bất đẳng thức trên ta được:
\(4a^3+4b^3+4a^3+4b^3+4c^3+4c^3\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)
\(\Rightarrow8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)
=> đpcm.
3) Chứng minh bằng biến đổi tương đương ; \(2\left(a^2+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2\)
\(\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\)(Chia cả hai vế cho a+b > 0)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Luôn đúng)
Vì bđt cuối luôn đúng nên bđt ban đầu được chứng minh.
b) Bạn biến đổi tương tự.
3) \(a^2-2ab+b^2\ge0\Leftrightarrow2a^2-2ab+2b^2\ge a^2+b^2\)
\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\Leftrightarrow\left(a+b\right)\left(2a^2-2ab+2b^2\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow2a^2-2ab+2b^2\ge a^2+b^2\)(đúng với a,b>0)
xét hiệu \(\frac{a^3+b^3}{2}-\left(\frac{a+b}{2}\right)^3=\frac{3}{8}\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với mọi a,b>0)
Làm thông thường thoy; khai triển ra xog chuyển vế
\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)
\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)
\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)
\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)
\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))
Vậy bđt đã đc chứng minh
Áp dụng BĐT cosi:
\(\left(a+b+b+c+c+a\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\\ \ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\\ \Leftrightarrow2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\\ \Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)
Dấu \("="\Leftrightarrow a=b=c\)
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Biến đổi \(4\left(a^3+b^3\right)-\left(a+b\right)^3=3a^3-3a^2b-3ab^2+3b^3=3a^2\left(a-b\right)-3b^2\left(a-b\right)=\left(3a^2-3b^2\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)^2\ge0\forall a,b>0\).
Từ đó ta có \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)
Bất đẳng thức cần chứng minh tương đương:
\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)
\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).
Vậy ta có đpcm.
\(\Leftrightarrow2a^3+2b^3-a^3-ab^2-a^2b-b^3>=0\)
\(\Leftrightarrow a^3+b^3-ab^2-a^2b>=0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)>=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2>=0\)(luôn đúng)