Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1-x}\)+\(\dfrac{1}{1+x}\)+\(\dfrac{2}{1+x^2}\)+\(\dfrac{4}{1+x^4}\)+\(\dfrac{8}{1+x^8}\)+\(\dfrac{16}{1+x^{16}}\)
=
=\(\dfrac{4}{1-x^4}\)+\(\dfrac{4}{1+x^4}\)+\(\dfrac{8}{1+x^8}\)+\(\dfrac{16}{1+x^{16}}\)
=\(\dfrac{8}{1-x^8}\)+\(\dfrac{8}{1+x^8}\)+\(\dfrac{16}{1+x^{16}}\)
=\(\dfrac{16}{1-x^{16}}\)+\(\dfrac{16}{1+x^{16}}\)
=\(\dfrac{32}{1-x^{32}}\)
a) Ta có I 2x - 1 I = 2015
=> 2x-1=2015 hoặc 2x-1=2015
+,Th1: 2x-1=2015
2x=2015+1
2x=2016
x=2016:2
x=1008
+,Th2: 2x-1=-2015
2x=-2015+1
2x=-2014
x=-2014:2
x=-1007
Vậy x=1008, x=-1007
|x-1|<5
th1: x-1<5=> x<6
th2: x-1<-5=> x<-4
vậy x <6 hoặc<-4
|x-1|>5 cũng tương tự như thế
còn mấy câu khác Nguyễn Diệu Thảo làm thế chắc bạn cũng biết cách làm rồi
L_I_K_E CHO MÌNH NHA!!!
a) Chương trình bị lỗi
b) Chương trình bị lỗi
c) Chương trình bị lỗi luôn
|7 + 5x| = 1 - 4x
=> \(\orbr{\begin{cases}7+5x=1-4x\left(đk:x\le\frac{1}{4}\right)\\7+5x=4x-1\left(đk:x\ge\frac{1}{4}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}7-1=-4x-5x\\7+1=4x-5x\end{cases}}\)
=> \(\orbr{\begin{cases}6=-9x\\8=-x\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{2}{3}\left(tm\right)\\x=-8\left(ktm\right)\end{cases}}\)
|4x2 - 2x| + 1 = 2x
=> |4x2 - 2x| = 2x - 1
=> \(\orbr{\begin{cases}4x^2-2x=2x-1\left(đk:x\ge\frac{1}{2}\right)\\4x^2-2x=1-2x\left(đk:x\le\frac{1}{2}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}4x^2-2x-2x+1=0\\4x^2-2x-1+2x=0\end{cases}}\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\4x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\x^2=\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\pm\frac{1}{2}\end{cases}}\)(tm)
Vậy ...
#It's the moment when you're in good mood, you accidentally click back =.=
1) Calculate
\(P=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}....1\frac{1}{63}.1\frac{1}{80}\)
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{64}{63}.\frac{81}{80}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{8.8}{7.9}.\frac{9.9}{8.10}\)
\(=\frac{2.9}{10}=\frac{9}{5}\)
ta có: 10010 + 1 > 10010 - 1
⇒ A = \(\frac{100^{10}+1}{100^{10}-1}< \frac{100^{10}+1-2}{100^{10}-1-2}=\frac{100^{10}-1}{100^{10}-3}=B\)
vậy A < B
a) |2x +1| = 7
Th1: 2x + 1 = 7
<=> x = 3
Th2: 2x + 1 = -7
<=> x = -4
\(1)\) Ta có :
\(\left|2x-1\right|\ge0\)
\(\Leftrightarrow\)\(A=\left|2x-1\right|+8\ge8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|2x-1\right|=0\)
\(\Leftrightarrow\)\(2x-1=0\)
\(\Leftrightarrow\)\(2x=1\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(A\) là \(8\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~
\(2)\) Ta có :
\(B=\left|x-3\right|+\left|x-9\right|-1\)
\(B=\left|x-3\right|+\left|9-x\right|-1\ge\left|x-3+9-x\right|-1=\left|6\right|-1=6-1=5\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-3\right)\left(9-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-3\ge0\\9-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le9\end{cases}\Leftrightarrow}3\le x\le9}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-3\le0\\9-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge9\end{cases}}}\) ( loại )
Vậy GTNN của \(B\) là \(5\) khi \(3\le x\le9\)
Chúc bạn học tốt ~
Úi, chữ anh hả. Không nghiêng, thẳng đứng chứng tỏ manly.chwus không gay :)))
Hợp lí nhỉ. =>>>