K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

a) \(\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{\left(kb\right)^{2004}-b^{2004}}{\left(kb\right)^{2004}+b^{2004}}=\frac{k^{2004}b^{2004}-b^{2004}}{k^{2004}b^{2004}+b^{2004}}=\frac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(1)

\(\frac{c^{2004}-d^{2004}}{d^{2004}+d^{2004}}=\frac{\left(kd\right)^{2004}-d^{2004}}{\left(kd\right)^{2004}+d^{2004}}=\frac{k^{2004}d^{2004}-d^{2004}}{k^{2004}d^{2004}+d^{2004}}=\frac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(2)

Từ (1) và (2) => đpcm

b) \(\frac{a^{2005}}{b^{2005}}=\frac{\left(kb\right)^{2005}}{b^{2005}}=\frac{k^{2005}b^{2005}}{b^{2005}}=k^{2005}\)(1)

\(\frac{\left(a-c\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left(kb-kd\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left[k\left(b-d\right)\right]^{2005}}{\left(b-d\right)^{2005}}=\frac{k^{2005}\left(b-d\right)^{2005}}{\left(b-d\right)^{2005}}=k^{2005}\)(2)

Từ (1) và (2) => đpcm

11 tháng 5 2019

\(\frac{2003\cdot2004+2005\cdot10+1994}{2005\cdot2004-2003\cdot2004}\)(dấu \(\cdot\)là dấu nhân)

\(=\frac{2003\cdot2004+\left(2004+1\right)\cdot10+1994}{2004\cdot\left(2005-2003\right)}\)

\(=\frac{2003\cdot2004+2004\cdot10+10+1994}{2004\cdot2}\)

\(=\frac{2003\cdot2004+2004\cdot10+2004}{2004\cdot2}\)

\(=\frac{2004\cdot\left(2003+10+1\right)}{2004\cdot2}\)

\(=\frac{2014}{2}=1007\)

19 tháng 6 2019

cho hỏi chút

\(\frac{a}{b}=\frac{c}{d}\)

trong đó

\(a=c\) hay \(a\ne c\)

\(b=d\) hay \(b\ne d\)

( bài có thiếu điều kiện ko vậy )

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

a)

\(2006.2005^{2003}> 2005.2005^{2003}=2005^{1+2003}=2005^{2004}\)

Vậy \(2006.2005^{2003}> 2005^{2004}\)

b)

\(2005^{2004}+2005^{2003}=2005^{2003}(2005+1)=2005^{2003}.2006< 2006^{2003}.2006\)

hay \(2005^{2004}+2005^{2003}< 2006^{2004}\)

c) Thiếu đề

d)

\(72^{27}-72^{26}=72^{26}(72-1)=71.72^{26}\)

\(72^{28}-72^{27}=72^{27}(72-1)=71.72^{27}> 71.72^{26}\)

\(\Rightarrow 72^{28}-72^{27}> 72^{27}-72^{26}\)

25 tháng 9 2018

Oh sorry !

c , 2005^2004 - 2005^2003 và 2004^2004

17 tháng 8 2018
Giúp mình với Mai đi học rồi
17 tháng 8 2018

mik ko biết sao giúp

12 tháng 7 2019

\(\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}=1-\frac{1}{2004}+1-\frac{1}{2005}+1+\frac{2}{2003}\)

\(=3+\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)\)

Do \(\frac{1}{2003}>\frac{1}{2004}>\frac{1}{2005}.\) nên \(\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)>0\)

Vì vậy \(3+\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)>3\) (đpcm)

12 tháng 7 2019

\(A=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}\)

\(=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})\)

\(=3+(\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005})\)

Do\(\frac{1}{2003}\)>\(\frac{1}{2004}\)>\(\frac{1}{2005}\)

\(\Rightarrow\frac{1}{2003}+\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\)>\(0\)

\(\Rightarrow3+(\frac{1}{2003}-\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2005})\)>\(3\)

\(\Rightarrow A\)>\(3\)