Phân tích đa thức thành nhân tử: \(x^5+x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x5 + x + 1
= x5 + x4 - x4 - x3 + x3 + x2 - x2 - x + x + 1
= (x5 + x4) - (x4 + x3) + (x3 + x2) - (x2 + x) + (x + 1)
= x5(x + 1) - x4.(x + 1) + x3(x + 1) - x2(x + 1) + (x + 1)
= (x + 1)(x5 - x4 + x3 - x2 + 1)
\(x5+x-1 = x5-x4+x3+x4-x3+x2-x2+x-1 = x3(x2-x+1)+x2(x2-x+1)-(x2-x+1) = (x2-x+1)(x3+x2-1) \)
hc tốt nha !!!!!!!!!
\(x^5+x+1=x^5-x^2+x^2+x+1=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20=\left[\left(x-1\right)\left(x-7\right)\right].\left[\left(x-3\right)\left(x-5\right)\right]-20\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
Đặt \(x^2-8x+11=t\) \(\Rightarrow\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20=\left(t-4\right)\left(t+4\right)-20=t^2-16-20=t^2-36=\left(t-6\right)\left(t+6\right)\)\(\Rightarrow\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20=\left(x^2-8x+11-6\right)\left(x^2-8x+11+6\right)=\left(x^2-8x+17\right)\left(x^2-8x+5\right)\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
\(x^5+x-1\)
\(=\left(x^5+x^4-x^2\right)-\left(x^4+x^3-x\right)+\left(x^3+x^2-x\right)\)
\(=x^2\left(x^3+x^2-1\right)-x\left(x^3+x^2-1\right)+\left(x^3+x^2-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)