K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : Cho tam giác ABC . Gọi D , E lần lượt là các điểm thuộc cạnh AC và AB sao cho DA = DC và EA =EB . Nối BD và CE cắt nhau tại K  Biết CE = 21 cm .  tính độ dài đoạn CK và KE .Bài 2 : Cho hình vuông ABCD có cạnh 6 cm . Trên đoạn BD lấy điểm E và P sao cho BE = EP = PD . a) Tính diện hình vuông ABCDb) Tính diện tích hình AECPc) M là điểm chính giữa cạnh PC , N là điểm chính giữa cạnh DC . MD và NP cắt nhau...
Đọc tiếp

Bài 1 : Cho tam giác ABC . Gọi D , E lần lượt là các điểm thuộc cạnh AC và AB sao cho DA = DC và EA =EB . Nối BD và CE cắt nhau tại K  Biết CE = 21 cm .  tính độ dài đoạn CK và KE .

Bài 2 : Cho hình vuông ABCD có cạnh 6 cm . Trên đoạn BD lấy điểm E và P sao cho BE = EP = PD . 

a) Tính diện hình vuông ABCD

b) Tính diện tích hình AECP

c) M là điểm chính giữa cạnh PC , N là điểm chính giữa cạnh DC . MD và NP cắt nhau tại I . So sánh diện tích tam giác IPM với diện tích tam giác IDN

Bài 3 : Cho hình thang ABCD có đáy AB bằng 2/3 đáy CD . Trên cạnh BC lấy một điểm E sao cho đoạn BE bằng 2/5 đoạn CE . Biết diện tích tam giác AED là 32 cm2 . Tính diện tích hình thang ABCD .

Bài 4 : Cho tam giác vuông ABC có góc vuông tại A . Cạnh AB dài 3 cm ,  cạnh AC dài 4 cm , cạnh BC dài 5 cm . Trên cạnh AB lấy điểm  M sao cho AM bằng 2 cm , trên cạnh AC lấy điểm N sao cho AN bằng 1 cm , trên cạnh BC lấy điểm E sao cho BE bằng 2,5 cm . Tính diện tích tam giác MNE

 

14
15 tháng 5 2016

bài 1: ta có;CE là trung tuyến của tam giác ABC =>KE=1/3 CE=1/3 x21=7(cm)

CK=2/3 CE=2/3x21=14(cm0

15 tháng 5 2016

5 người đầu tiên mình sẽ được mình tích

16 tháng 12 2023

a: Ta có: ABCD là hình vuông

=>AB=BC=CD=DA(1)

Ta có: M là trung điểm của AB

=>\(MA=MB=\dfrac{AB}{2}\left(2\right)\)

Ta có: N là trung điểm của BC

=>\(NB=NC=\dfrac{BC}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra MA=MB=NB=NC

Xét ΔMBC vuông tại B và ΔNCD vuông tại C có

MB=NC

BC=CD

Do đó: ΔMBC=ΔNCD

=>\(\widehat{MCB}=\widehat{NDC}\)

mà \(\widehat{NDC}+\widehat{DNC}=90^0\)

nên \(\widehat{MCB}+\widehat{DNC}=90^0\)

=>CM\(\perp\)DN tại I

Ta có: ΔMBC=ΔNCD

=>MC=ND

b: Ta có: AH\(\perp\)DN

CM\(\perp\)DN

Do đó: AH//CM

=>AP//CM

Xét tứ giác AMCP có

AP//CM

AM//CP

Do đó: AMCP là hình bình hành

=>AM=CP

mà \(AM=\dfrac{AB}{2}=\dfrac{CD}{2}\)

nên \(CP=\dfrac{CD}{2}\)

=>P là trung điểm của CD

=>PC=PD

c: Xét ΔDIC có

P là trung điểm của DC

PH//IC

Do đó: H là trung điểm của DI

Xét ΔADI có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔADI cân tại A

=>AD=AI

mà AD=AB

nên AI=AB

4 tháng 4 2019

bạn gửi câu a cho mk đi

7 tháng 4 2019

Câu a đây Đệ Ngô!

a. CM: AM = BM = BN = NC (1/2AB = 1/2BC)

Cm: Tam giác MBC = tam giác NCD (c-g-c)

=> góc BMC = góc CND

Mà tam giác BMC vuông tại B

=> BMC + BCM = 900

=> CND + BCM = 900

=> Tam giác CIN vuông tại I.

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng