Cho x,y,z > 0 và \(xyz\ge1\)
CMR: \(\frac{x^5-x^2}{x^5+y^2+z^2}+\frac{y^5-y^2}{y^5+z^2+x^2}+\frac{z^5-z^2}{z^5+x^2+y^2}\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đã khuya nên não cũng không còn hoạt động tốt nữa, mình làm bài 1 thôi nhé.
Bài 1:
a)
\(2\text{VT}=\sum \frac{2bc}{a^2+2bc}=\sum (1-\frac{a^2}{a^2+2bc})=3-\sum \frac{a^2}{a^2+2bc}\)
Áp dụng BĐT Cauchy-Schwarz:
\(\sum \frac{a^2}{a^2+2bc}\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)
Do đó: \(2\text{VT}\leq 3-1\Rightarrow \text{VT}\leq 1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
b)
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\sum \frac{ab^2}{a^2+2b^2+c^2}=\sum \frac{ab^2}{\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+b^2}\leq \sum \frac{1}{16}\left(\frac{9ab^2}{a^2+b^2+c^2}+\frac{ab^2}{b^2}\right)\)
\(=\frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2}+\frac{a+b+c}{16}(1)\)
Áp dụng BĐT AM-GM:
\(3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)\)
\(\Rightarrow \frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2)}\leq \frac{3}{16}(a+b+c)(2)\)
Từ $(1);(2)\Rightarrow \text{VT}\leq \frac{a+b+c}{4}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Lý giải xíu chỗ $3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)$ cho bạn nào chưa rõ:
Áp dụng BĐT AM-GM:
$(a^2+b^2+c^2)(a+b+c)=(a^3+ac^2)+(b^3+a^2b)+(c^3+b^2c)+(ab^2+bc^2+ca^2)$
$\geq 2a^2c+2ab^2+2bc^2+(ab^2+bc^2+ca^2)=3(ab^2+bc^2+ca^2)$
Cho x,y,z>0; \(x^2+y^2+z^3=\frac{5}{3}\)
CMR: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\le\frac{1}{xyz}\)
\(\Sigma\left(\dfrac{x^5-x^2}{x^5+y^2+z^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(1-\dfrac{x^5-x^2}{x^5+y^2+z^2}\right)\le3\)
\(\Leftrightarrow\Sigma\left(\dfrac{x^2+y^2+z^2}{x^5+y^2+z^2}\right)\le3\)
\(\Leftrightarrow\dfrac{1}{x^5+y^2+z^2}+\dfrac{1}{y^5+x^2+z^2}+\dfrac{1}{z^5+x^2+y^2}\le\dfrac{3}{x^2+y^2+z^2}\)
Áp dụng bất đẳng thức Bunyakovsky
\(\Rightarrow\left(x^5+y^2+z^2\right)\left(\dfrac{1}{x}+y^2+z^2\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\Rightarrow\dfrac{1}{x^5+y^2+z^2}\le\dfrac{\dfrac{1}{x}+y^2+z^2}{\left(x^2+y^2+z^2\right)^2}\)
Thiết lập tương tự và thu lại ta có
\(\Rightarrow\dfrac{1}{x^5+y^2+z^2}+\dfrac{1}{y^5+x^2+z^2}+\dfrac{1}{z^5+x^2+y^2}\le\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\)
Chứng minh rằng \(\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\le\dfrac{3}{x^2+y^2+z^2}\)
\(\Leftrightarrow\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\le\dfrac{x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le x^2+y^2+z^2\) ( vì \(xyz=1\) )
\(\Leftrightarrow xy+yz+xz\le x^2+y^2+z^2\) ( luôn đúng theo hệ quả của bất đẳng thức Cauchy )
\(\Rightarrow\) đpcm
Dấu " = " xảy ra khi \(x=y=z=1\)
dinh lam nhung thoi vi chac chan se con nguoi vao lam ho :)
Áp dụng BĐT AM-GM ta có:
\(\frac{4\left(x^5-x^2\right)}{x^5+y^2+z^2}+1=\frac{5x^5-4x^2+y^2+z^2}{x^5+y^2+z^2}=\frac{3x^5+\left(2x^5+y^2+z^2-4x^2\right)}{x^5+y^2+z^2}\)
\(\ge\frac{3x^5+4\sqrt[4]{x^{10}y^2z^2}-4x^2}{x^5+y^2+z^2}\ge\frac{3x^5}{x^5+y^2+z^2}=\frac{3x^4}{x^4+\frac{y^2+z^2}{x}}\ge\frac{3x^4}{x^4+yz\left(y^2+z^2\right)}\ge\frac{3x^4}{x^4+y^4+z^4}\)
suy ra: \(\frac{x^5-x^2}{x^5+y^2+z^2}\ge\frac{3}{4}.\frac{x^4}{x^4+y^4+z^4}-\frac{1}{4}\)
tương tự ta có: \(\frac{y^5-y^2}{y^5+z^2+x^2}\ge\frac{3}{4}.\frac{y^4}{x^4+y^4+z^4}-\frac{1}{4}\)
\(\frac{z^5-z^2}{z^5+y^2+x^2}\ge\frac{3}{4}.\frac{z^4}{x^4+y^4+z^4}-\frac{1}{4}\)
Cộng theo vế ta được:
\(VT\ge\frac{3}{4}.\frac{x^4+y^4+z^4}{x^4+y^4+z^4}-\frac{3}{4}=0\)
Vậy BĐT đc c/m
p/s: bài này mk cx k chắc (nhờ bn ktra nó kêu cứ sai sai nên mk cx k rõ) bạn tham khảo, sai đâu ib cho mk nhé
thân ái!