Bài 1: chứng tỏ rằng: \(\left(2^1+2^2+2^3+...+2^{60}\right)⋮3\)
Bài 2: Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
https://olm.vn/hoi-dap/question/118678.htm Ok nha Giờ bn giúp mk làm bài toán hình học lớ 6 đc k
Bài 1 :
Gọi 3 số chẵn liên tiếp là \(2a-2,2a,2a+2\)
Tích 3 số \(\left(2a-2\right)2a\left(2a+2\right)=8.\left(a-1\right)a\left(a+1\right)\)
Vì \(\left(a-1\right)a\left(a+1\right)⋮3\)\(\Leftrightarrow\left(a-1\right)a\left(a+1\right)⋮6\)
nên \(\left(2a-2\right).2a.\left(2a+2\right)\)
Vậy \(\left(2a-2\right).2a.\left(2a+2\right)\)
Bài 2
a) \(\left(5^n-1\right)⋮4\)
Nếu \(n=1\)thì \(5^n-1=4⋮4\)
Nếu \(n>1\)thì \(5^n\)có hai chữ số tận cùng là \(25\Rightarrow5^n-1\)có hai chữ số tận cùng là \(24\),chia hết cho \(4\)
Vậy \(\left(5^n-1\right)⋮4\)
b) \(\left(10^n+18n-1\right)⋮27\)
Ta có :\(10^n-1=99.....9\)(n chữ số 9)
\(\Rightarrow10^n+18n^{ }-1=99...9+18n=9.\left(11....1+2n\right)\)(n chữ số 1 )
Ta có \(\left(11....1+2n\right)⋮3\)( Vì \(11...1+2n\)có tổng các chữ số bằng \(3n⋮3\)
\(\Rightarrow\left(10^n+18n-1\right)⋮9.3\)hay \(\left(10^n+18n-1\right)⋮27\)
Chúc bạn học tốt ( -_- )
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
a, Nếu \(a⋮2\Rightarrow\)có 1 số chia hết cho 2
Nếu a ko chia hết cho 2 =>a là số lẻ
a=2k+1
=>a+1=(2k+1)+1
=>2k+2chia hết cho 2(vì 2k chia hết cho 2 và 2 cũng chia hết cho 2)
b, Nếu a chia hết cho 3=> có 1 số chia hết cho 3
Nếu a=3k+1 thì =>a+2=3k+3, chia hết cho 3
nếu a=3k+2 thì
=>a+1=3k+3, chia hết cho 3.
A) Gọi 2 số tự nhiên liên tiếp là n,n +1(n thuộc N)
Nếu nguyễn chia hết cho 2 thì ta có điều chứng tỏ
Nếu = 2k + 1 thì 2 + 1 = 2k +2 chia hết cho 2
B)
Nếu n chia hết cho 2 thì ta có điều cần chứng tỏ
Nếu n = 2k + 1 thì n + 1 = 2k +2 chia hết cho 2
b)Gọi 2 số tự nhiên liên tiếp là:n,n+1,n+2(n
Bài 1 :
\(2^1+2^2+2^3+...+2^{60}.\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)
\(=2.3+2^3.3+...+5^{59}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)\)
\(\Rightarrow\left(2^1+2^2+....+2^{60}\right)⋮3\)
Bài 2 : Đề sai nhé ví dụ 1 và 2 : 1 x 2 = 2 không chia hết cho 6
Bài 2 : hs3 số tự nhiên liên tiếp chia hết cho 6
+ trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2
+ gọi số thứ nhất là : 2a ; 2a + 1 ; 2a + 2
+ a là số chẵn => 2a + 1 chia hết cho 3
+ a là số lẻ => 2a + 2 chia hết chO 3
Vậy trong ba số tự nhiên liên tiếp luôn chia hết cho 2.3 = 6