Cho tam giác ABC cân tại A,trên tia đối của tia CB lấy E và trên BC lấy D sao cho BD=CE.
a) Chứng minh tam giác ADE cân.
b) Kẻ BH vuông góc AD tại H,CK vuông góc AE tại K.Chứng minh BH=CK và HK//BC.
c) Gọi O là giao điểm của BH và CK. Tam giác DBC là tam giác gì,tại sao?
d) Gọi M là trung điểm của DC.Chứng minh AM,BH,CK đồng quy.
a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE
=> ^ABD = ^ACE
TG ABD = TG ACE (c.g.c)
=> ABD=ACE => TG ADE cân(đpcm)
b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)
=> BH=CK (đpcm)
=> DH=KE
* Ta có: AD = AE (vì TG ADE cân)
DH=KE(CMT)
mà AD - DH = AH
AE - KE = AK
=> AH = AK
và DH=KE ( CMT)
Do đó: HK là đường trung bình của TG ADE
=> HK // DE
c, ý b là BOC?
^HBD=^KCE (TG HBD= TG KCE )
=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)
=> TG OBC cân
*