Cho tứ giác lồi ABCD có AC=8 và BD=6. a) CMR trong bốn cạnh của tứ giác tồn tại một cạnh có độ dài nhỏ hơn hoặc bằng 7. b) CMR trong bốn cạnh của tứ giác tồn tại một cạnh có độ dài lớn hơn hoặc bằng 5.
Giải giúp mình với ạ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AC và BD là hai đường chéo tứ giác lồi (không tính trường hợp đặt biệt)
Áp dụng BDT tam giác
AB+BC≥AC=8
nên tồn tại AB hoặc BC nhỏ hơn hoặc bằng 4
VẬY tồn tại cạnh nhỏ hơn 7
câu b bạn làm tương tự là ra :>
Bài 2:
Nếu cả bốn góc trong một tứ giác đều là góc nhọn thì tổng của bốn góc đó sẽ nhỏ hơn 360 độ(trái với định lí tổng bốn góc trong một tứ giác)
Nếu cả bốn góc trong một tứ giác đều là góc tù thì tổng của bốn góc đó sẽ lớn hơn 360 độ(trái với định lí tổng bốn góc trong một tứ giác)
Ta có đpcm
1) Xét ΔABC và ΔCDA có
AB=CD(gt)
\(\widehat{BAC}=\widehat{DCA}\)(hai góc so le trong, AB//CD)
AC chung
Do đó: ΔABC=ΔCDA(c-g-c)
Suy ra: \(\widehat{ACB}=\widehat{CAD}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC(Đpcm)
a) Gọi giao của AC và BD là O
sử dụng bất đẳng thức tam giác , ta có:
OA+OB>AB
OB+OC>BC
OC+OD>CD
OD+OA>AD
cộng các về lại ta được: 2(AC+BD)>chu vi tứ giác ABCD
==> cvi ABCD<28
theo nguyên lý đi rích lê có 28 chia cho 4 cạnh thì luôn có 1 cạnh nhỏ hơn 7