So sánh :x=2^30+3^30+4^30 và y=3^20 +6^20+8^20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(2^{30}=\left(2^3\right)^{10}=8^{10}< 9^{10}=\left(3^2\right)^{10}=3^{20}\)
\(3^{30}=3^{20}.3^{10}< 3^{20}.4^{10}=3^{20}.\left(2^2\right)^{10}=3^{20}.2^{20}=\left(3.2\right)^{20}=6^{20}\)
\(4^{30}=4^{20}.4^{10}=4^{20}.\left(2^2\right)^{10}=4^{20}.2^{20}=\left(4.2\right)^{20}=8^{20}\)
nên \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
a)\(10^{20}=\left(10^2\right)^{10}=100^{10}\left(1\right)\)
\(9^{30}=\left(9^3\right)^{10}=729^{10}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow9^{30}>10^{20}\)
b) \(\left(-5\right)^{30}=5^{30}=125^{10}\)
\(\left(-3\right)^{50}=3^{50}=243^{10}\)
\(\Rightarrow\left(-3\right)^{50}>\left(-5\right)^{30}\)
c)\(64^8=\left(2^6\right)^8=2^{48}\)
\(16^{12}=\left(2^4\right)^{12}=2^{48}\)
\(\Rightarrow64^8=16^{12}\)
Xét \(A=2^{30}+3^{30}+4^{30}=\left(2^3\right)^{10}+\left(3^3\right)^{10}+\left(2^2\right)^{30}=8^{10}+27^{10}+2^{60}\)
\(B=3^{20}+6^{20}+8^{20}=\left(3^2\right)^{10}+\left(6^2\right)^{10}+\left(2^3\right)^{20}=9^{10}+36^{10}+2^{60}\)
Vì \(8^{10}< 9^{10},27^{10}< 36^{10}\)nên A<B
230 = 23.10= 810
330=33.10=2710
430=43.10=6410
Vế trái = 810 + 2710 + 6410
320=32.10=910
620=62.10=3610
820=82.10=6410
vế phải = 910 + 3610 + 6410
Vì 6410=6410 ; 3610 > 2710 ; 910 > 810
=> vế phải > vế trái
a) \(A=1+2+2^2+2^3+...+2^{100}\) \(B=2^{201}\)
\(2A=2\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{201}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{201}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(2A-A=2^{101}-1\)
\(A=2^{201}-1\)
Ta có 2201 > 2201 - 1 => B > A => 2201 > 1 + 2 + 22 + 23 +...+ 1100
ta có \(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(3^{30}=\left(3^3\right)^{10}=27^{10}\)
\(4^{30}=\left(4^3\right)^{10}=64^{10}\)
ta có \(3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(6^{20}=\left(6^2\right)^{10}=36^{10}\)
\(8^{20}=\left(8^2\right)^{10}=64^{10}\)
\(\Rightarrow2^{30}+3^{30}+4^{30}=8^{10}+27^{10}+64^{10}\)
\(\Rightarrow3^{20}+6^{20}+8^{20}=9^{10}+36^{10}+64^{10}\)
Xét \(8^{10}<9^{10}\) (1)
\(27^{10}<36^{10}\)(2)
\(64^{10}=64^{10}\)(3)
từ (1)(2)(3)\(\Leftrightarrow8^{10}+27^{10}+64^{10}<9^{10}+36^{10}+64^{10}\)
\(\Rightarrow2^{30}+3^{30}+4^{30}<3^{20}+6^{20}+8^{20}\)