Chứng minh rằng:
62n+4 + 3n+4 + 3n+4 chia hết cho 11 ( với n thuộc Z, n >= -2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(4n-3\right)^2-\left(3n-4\right)^2\)
\(=\left[\left(4n-3\right)+\left(3n-4\right)\right]\left[\left(4n-3\right)\right]-\left(3n-4\right)\)
\(=\left(7n-7\right)\left(n+1\right)=7\left(n-1\right)\left(n+1\right)\)
Vậy \(\left(4n-3\right)^2-\left(3n-4\right)^2\) Chia hết cho 7 với mọi n thuộc Z
a) 5n + 11 chia hết cho 3n + 4
=> 3.(5n + 11) chia hết cho 3n + 4
=> 15n + 33 chia hết cho 3n + 4
=> 15n + 20 + 13 chia hết cho 3n + 4
=> 5.(3n + 4) + 13 chia hết cho 3n + 4
Do 5.(3n + 4) chia hết cho 3n + 4 => 13 chia hết cho 3n + 4
Mà 3n + 4 chia 3 dư 1 => \(3n+4\in\left\{1;13\right\}\)
=> \(3n\in\left\{-3;9\right\}\)
=> \(n\in\left\{-1;3\right\}\)
b) 2n2 + 3n - 11 chia hết cho n + 2
=> 2n2 + 4n - n - 2 - 9 chia hết cho n + 2
=> 2n.(n + 2) - (n + 2) - 9 chia hết cho n + 2
=> (n + 2).(2n - 1) - 9 chia hết cho n + 2
Do (n + 2).(2n - 1) chia hết cho n + 2 => 9 chia hết cho n + 2
=> \(n+2\in\left\{1;-1;3;-3;9;-9\right\}\)
=> \(n\in\left\{-1;-3;1;-5;7;-11\right\}\)
Câu b bn ý chép sai đề 1 chút, mk đã hỏi bn ý và sửa lại nên lm như trên
5n+11 chia hết cho 3n+4
=>15n+33 chia hết cho 3n+4
mà 15n+20 chia hết cho 3n+4
=>13 chia hết cho 3n+4
=>3n+4=13,1,-1,-13
=>3n=9,-3,-5,-16
=>n=3,-1
Bg
Ta có n không chia hết cho 2 và 3 (n \(\inℤ\))
=> n không chia hết cho 6
Vì n không chia hết cho 6 và 2 và 3 nên n chia 6 dư 1 và chia 6 dư 5.
=> n có dạng 6x + 1 hoặc 6x + 5 (với x \(\inℤ\))
Xét n = 6x + 1:
=> 4.(n2) + 3n + 5 = 4.(n2) + 3(6x + 1) + 5
Vì n chia 6 dư 1 nên n2 chia 6 dư 1 => n2 có dạng 6x + 1 luôn
= 4(6x + 1) + 3(6x + 1) + 5
= 24x + 4 + 18x + 3 + 5
= 24x + 18x + (4 + 3 + 5)
= 24x + 18x + 12
Vì 24x \(⋮\)6; 18x \(⋮\)6 và 12 \(⋮\)6
Nên 24x + 18x + 12\(⋮\)6
=> 4.(n2) + 3n + 5 \(⋮\)6
=> ĐPCM
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
a, (3n+2) - (n-6) = 3n+2-n+6 = 2n+8 luôn chia hết cho 2
b, (n+2) + (n+4) + 6 = n+2+n+4+6 = 2n+12 luôn chia hết cho 2
c, (n+3)+2(n+4)+1 = n+3+2n+8+1 = 3n+12 luôn chia hết cho 3
a) Ta có : n3 + 3n2 + 2n
= n(n2 + 3n + 2)
= n(n + 1)(n + 2) \(⋮\)6 (tích 3 số nguyên liên tiếp) (đpcm)
b) A = 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + .... + 295 + 296 + 297 + 298 + 299
= (1 + 2 + 22 + 23 + 24) + 25(1 + 2 + 22 + 23 + 24) + ... + 295(1 + 2 + 22 + 23 + 24)
= 31 + 25.31 + .. + 295.31
= 31(1 + 25 + ... + 295) \(⋮31\)(đpcm)
c) Ta có 49n + 77n - 29n - 1
= (49n - 1) + (77n - 29n)
= (49 - 1)(49n - 1 - 49n - 2 + .... - 1) + (77 - 29)(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1)
= 48(49n - 1 - 49n - 2 + .... - 1) + 48(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1)
= 48(49n - 1 - 49n - 2 + .... - 1 + 77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) \(⋮\)48 (đpcm)