Cho tam giác ABC đều. Vẽ ra phía ngoài tam giác ABM, tg AMD đều. Vẽ ra phía tg AMD, tg MDC đều
a, CM: Tứ giác ABCD là hình thang cân
b, Gọi O là giao điểm của AC và BD. CM: OA=1/3AC, OD=1/3BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do góc DAM = góc AMB=600, mà 2 góc này slt nên AD//BC=> ABCD là hình thang
Mà góc ABC= góc DCB=600 nên ABCD là hình thang cân.
Còn O là điểm gì thì mik ko bt
Do AM=AB, AD//BC nên ABCM là hình thoi.
Ma AC và BM là 2 đường chéo nên OAM=OAB=600/2=300.
Tương tự ta cx có OBM=OBC=600/2=300.
=> ABO=600+300=900
Do Tam giác ABO có B=900 và A=300 nên đây là tam giác nửa đều.
=>AO=2OB. (1)
Mà O là giao điểm 2 đg chéo hình thg cân nên OA=OD. (2)
Từ (1),(2), ta có OD=2OB.
(DO MÌNH TỰ GIẢI NÊN CÓ GÌ SAI BN SỬA LẠI NHA!)
Bài giải
a) + Vì \(\Delta ABC\)và \(\Delta ACD\)đều
\(\Rightarrow\)\(\widehat{BAC}=\widehat{ACD}\left(=60^0\right)\)
mà chúng ở vị trí so le trong
\(\Rightarrow\)\(AD//BC\)(1)
+ Chứng minh tương tự: \(AD//CE\)(2)
+ Từ (1) và (2) \(\Rightarrow\)\(AD//BE\)
\(\Rightarrow\)Tứ giác \(ADEB\)là hình thang
+ Vì \(\Delta ABC\)và \(\Delta DCE\)đều
\(\Rightarrow\)\(\widehat{ABC}=\widehat{DEC}\left(=60^0\right)\)
\(\Rightarrow\)Hình thang \(ADEB\)là hình thang cân ( ĐPCM )
b) + Vì \(\Delta ABC\)đều \(\Rightarrow\)\(AB=BC=AC\)(3)
\(\Delta ACD\)đều \(\Rightarrow\)\(DA=AC=CD\)(4)
\(\Delta DCE\)đều \(\Rightarrow\)\(DC=CE=ED\)(5)
+ Từ (3),(4) và (5) \(\Rightarrow\)\(AB=BC=AC=DA=DC=CE=ED\)
\(\Rightarrow\)\(AD=\frac{1}{2}BE\)\(\Rightarrow\)\(\frac{AD}{BE}=\frac{1}{2}\)
+ Vì \(AD//BE\)\(\Rightarrow\)\(\frac{AO}{OE}=\frac{DO}{OB}=\frac{AD}{BE}\)( định lí Ta-lét )
mà \(\frac{AD}{BE}=\frac{1}{2}\)\(\Rightarrow\)\(\frac{AO}{OE}=\frac{DO}{OB}=\frac{1}{2}\)
Vậy O chia mỗi đường chéo thành 2 phần theo tỉ lệ 1:2
^_^ chúc bn hok tốt nha ^_^
BN TỰ VẼ HÌNH NHA dương minh tuấn !!!!!!
a. BM // AC \(\Rightarrow\) \(\frac{AD}{DB}=\frac{AC}{MB}\)
\(\Rightarrow\frac{AD}{AD+DB}=\frac{AC}{AC+MB}\)
\(\Rightarrow\frac{AD}{AB}=\frac{AC}{AC+AB}\left(1\right)\)
\(CN\) // \(AB\Rightarrow\frac{AE}{EC}=\frac{AB}{CN}\Rightarrow\frac{AE}{AE+EC}=\frac{AB}{AB+CN}\)
\(\Rightarrow\frac{AE}{AC}=\frac{AB}{AB+AC}\Rightarrow\frac{AE}{AB}=\frac{AC}{AC+AB}\left(2\right)\)
TỪ (1) VÀ (2) \(\Rightarrow\frac{AD}{AB}=\frac{AE}{AB}\Rightarrow AD=AE\)
vì \(\widehat{BAC}=60^0\)
nên \(\Delta AED\) là tam giác đều
b. theo hướng chứng minh trên :
\(\frac{AD}{DB}=\frac{AC}{MB}=\frac{AC}{AB}\left(3\right)\)
\(\frac{AE}{EC}=\frac{AB}{CN}=\frac{AB}{AC}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\frac{AD}{DB}=\frac{EC}{AE}\Rightarrow AD^2=DB.EC=4.9\)
\(AD=6\Rightarrow DE=6\)