K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

Bài 1 :

a ) \(z\left(y-x\right)+y\left(x-z\right)+x\left(y+z\right)-2yz+100\)

\(=yz-xz+xy-yz+xy+xz-2yz+100\)

\(=2xy-2yz+100\) ( Đề sai )

b ) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)

\(=2y^3+2y^2+2y-2y^3-2y^2-2y-20\)

\(=-20\)

Vậy biểu thức không phụ thuộc vào biến .

Bài 2 :

a ) \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)

\(\Leftrightarrow36x^2-12x-36x^2+27x=30\)

\(\Leftrightarrow15x=30\)

\(\Leftrightarrow x=2\)

b ) \(2x\left(x-5\right)-x\left(2x+3\right)=x^2-x\left(x-1\right)\)

\(\Leftrightarrow2x^2-10x-2x^2-3x-x^2+x^2-x=0\)

\(\Leftrightarrow-14x=0\)

\(\Leftrightarrow x=0\)

22 tháng 7 2018

Bài 1 câu a chép sai đề.....

30 tháng 6 2016

a)Z(y-x)+y(z-x)+x(y+z)-2yz

=>yz-xz+yz-xy+xy+xz-2yz

=(yz+yz)-(xz-xz)+(-xy+xy)-2yz

=2yz-2yz

=0

2 tháng 11 2023

\(A=\left(x-2y\right)\left(x+2y\right)+\left(2y-x\right)^2+2023+4xy\)

\(A=x^2-\left(2y\right)^2+\left(4y^2-4xy+x^2\right)+2023+4xy\)

\(A=x^2-4y^2+4y^2-4xy+x^2+4xy\)

\(A=2x^2+2023\)

Vậy giá trị của biểu thức chỉ phụ thuộc vào x không phụ thuộc vào y 

\(B=\left(2x-3\right)\left(x-y\right)-\left(x-y\right)^2+\left(y-x\right)\left(x+y\right)\)

\(B=2x^2-2xy-3x+3y-\left(x^2-2xy+y^2\right)+y^2-x^2\)

\(B=2x^2-2xy-3x+3y-x^2+2xy-y^2+y^2-x^2\)

\(B=-3x+3y\)

Vậy giá trị của biểu thức vẫn phụ thuộc vào biến 

2 tháng 11 2023

A = (\(x\) - 2y)(\(x\) + 2y) + (2y - \(x\))2 + 2023 + 4\(xy\)

A = \(x^2\) - 4y2 + 4y2 - 4\(xy\) + \(x^2\) + 2023 + 4\(xy\)

A = (\(x^2\) + \(x^2\)) - (4y2 - 4y2) + 2023 - (4\(xy\) - 4\(xy\))

A = 2\(x^2\) - 0 + 2023 - 0

A = 2\(x^2\) + 2023

Việc chứng minh A có giá trị không phụ thuộc vào giá trị của biến là điều không thể xảy ra.

14 tháng 7 2017

Ta có \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2-3\left(x^2+y^2+z^2\right)\)

=\(x^2+y^2+z^2+2xy+2yz+2xz+x^2-2xy+y^2+y^2-2yz+z^2+x^2-2xz+z^2-3x^2-3y^2-3z^2\)

\(=0\)

Vậy biểu thức có giá trị không phụ thuộc vào biến 

19 tháng 9 2021

 B=-x(x-y)-y(x+y)+(x+y)(x-y)+2y^(2)

B=-x^2+xy-yx-y^2+x^2-xy+xy-y^2+2y^2

B=0 

vậu B ko phọ thuộc vào gt của biến

 

\(B=-x\left(x-y\right)-y\left(x+y\right)+\left(x+y\right)\left(x-y\right)+2y^2\)

\(=-x^2+xy-xy-y^2+x^2-y^2+2y^2\)

=0

2 tháng 7 2019

Xem lại đề đi rồi chúng mình nói chuyện :))

30 tháng 6 2018

\(\frac{x}{\left(x-y\right)\left(x-z\right)}\)  \(+\frac{y}{\left(x-y\right)\left(y-z\right)}\)\(+\frac{z}{\left(y-z\right)\left(z-x\right)}\)

\(=\)\(\frac{x\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)  \(+\frac{y\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}-\)\(\frac{z\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x\left(y-z\right)+y\left(x-z\right)-z\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\)\(\frac{xy-xz+xy-yz-xz+yz}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\) 

\(=\)\(\frac{2xy-2xz}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{2x\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\)\(\frac{2x}{\left(x-y\right)\left(x-z\right)}\)

13 tháng 7 2016

P = x^3 (z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1) 
= -x^3 (y^2-z) +y^3x-y^3z^2 +z^3y-z^3x^2+x^2y^2z^2-xyz 
= -x^3 (y^2-z)+(y^3x-xyz)-(y^3z^2-z^3y)+(x^2y^2... 
= -x^3 (y^2-z)+xy(y^2-z)-yz^2(y^2-z)+x^2z^2(y^2... 
= (y^2-z)(-x^3+xy-yz^2+x^2z^2) 
= (y^2-z)[-x(x^2-y)+z^2(x^2-y)] 
= (y^2-z)(x^2-y)(z^2-x) = b. a. c ko phụ thuộc vào biến