Tìm x , y \(\in\) Z biết
a, x + 22 \(⋮\) x + 1
b, ( x - 2 ) . ( 2y + 1 ) = 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
==>(x+1+21)chia hết cho (x+1)
Mà (x+1) chia hết cho (x+1)
Nên 21 chia hết cho ( x+1)
==> x+1 € Ư(21)
==>x+1€{1;-1;3;-3;7;-7;21;-21}
Ta có:
TH1: x+1=1
x=1-1
x=0
TH2: x+1=-1
x=-1-1
x=-2
TH3: x+1=3
x=3–1
x=2
TH4: x+1=-3
x=-3-1
x=-4
TH5: x+1=7
x=7-1
x=6
TH6: x+1=-7
x=-7-1
x=-8
TH7: x+1=21
x=21-1
x=20
TH8:
x+1=-21
x=-21-1
x=-22
Vậy x€{0;-2;2;-4;6;-8;20;-22}
(x—2).(2y+1)=17
==> x—2=1 và 2y+1=17
Hay x—2=17 và 2y+1=17
Ta có
\(\hept{\begin{cases}x-2=1\\2y+1=17\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1+2\\2y=17-1\end{cases}}\hept{\begin{cases}x=3\\2y=16\end{cases}}\)
\(\hept{\begin{cases}x=3\\y=16:2\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=8\end{cases}}\)
Ta lại có:
\(\hept{\begin{cases}x-2=17\\2y+1=1\end{cases}}\Rightarrow\hept{\begin{cases}x=17+2\\2y=1+1\end{cases}}\Rightarrow\hept{\begin{cases}x=19\\2y=2\end{cases}\Rightarrow\hept{\begin{cases}x=19\\y=2:2\Rightarrow\end{cases}}\hept{\begin{cases}x=19\\y=1\end{cases}}}\)
a) (x+22) chia hết cho (x+3)
==> x+3+18 chia hết cho (x+3)
Vì x+3 chia hết cho x+3
Nên 18 chia hết cho x+3
==> x+3 € Ư(18)
==x€{1;—1;2;—2;3;—3;6;—6;9;—9}
TH1: x+3=1
.......
TH2: x+3=—1
.....
TH3: x+3=2
......
TH4:
TH5:
TH6:
TH7:
TH8:
TH9:
TH10:
Vậy x€{...}
Bạn tự tính hết các trường hợp nhé, nếu chưa học số âm thì ko cần viết vào đâu
b)(x—5) € Ư(17)
==> (x—5)€{1;—1;17;—17}
TH1: x—5=1
....
TH2: x—5=—1
...
TH3: x—5=17
...
TH4: x—5=—17
...
Vậy x€{...}
5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
nên x=5k; y=3k
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow25k^2-9k^2=4\)
\(\Leftrightarrow k^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)
a) (2x+1)(2y-3)=36
=> 2x+1 ; 2y-3 thuộc Ư(36)={-1,-2,-3,-4,-6,-9,-13,-18,-36,1,2,3,4,6,9,13,18,36}
Ta có bảng :
2x+1 | -1 | -2 | -3 | -4 | -6 | -9 | -13 | -18 | -36 | 1 | 2 | 3 | 4 | 6 | 9 | 13 | 18 | 36 |
2y-3 | -36 | -18 | -13 | -9 | -6 | -4 | -3 | -2 | -1 | 36 | 18 | 13 | 9 | 6 | 4 | 3 | 2 | 1 |
x | -1 | -3/2 | -2 | -5/2 | -7/2 | -5 | -7 | -19/2 | -37/2 | 0 | 1/2 | 1 | 3/2 | 5/2 | 4 | 6 | 17/2 | 35/2 |
y | -33/2 | -15/3 | -5 | -3 | -3/2 | -1/2 | 0 | 1/2 | 1 | 39/2 | 21/2 | 8 | 6 | 9/2 | 7/2 | 3 | 5/2 | 2 |
Vậy ta có các cặp x,y thõa mãn đề bài là : (-2,-5);(-7,0);(1,8);(6,3)
a) 3x = 7y ⇒ x/7 = y/3
⇒ x/7 = 2y/6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/7 = 2y/6 = (x - 2y)/(7 - 6) = 2/1 = 2
x/7 = 2 ⇒ x = 2.7 = 14
y/3 = 2 ⇒ y = 2.3 = 6
Vậy x = 14; y = 6
b) x/2 = y/3 ⇒ x/6 = y/9 (1)
x/3 = z/4 ⇒ x/6 = z/8 (2)
Từ (1) và (2) ⇒ x/6 = y/9 = z/8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/6 = y/9 = z/8 = (x + y - z)/(6 + 9 - 8) = 7/7 = 1
x/6 = 1 ⇒ x = 1.6 = 6
y/9 = 1 ⇒ y = 1.9 = 9
z/8 = 1 ⇒ z = 1.8 = 8
Vậy x = 6; y = 9; z = 8
c) x/2 = y/3 ⇒ x/10 = y/15 ⇒ 2x/20 = y/15 (3)
y/5 = z/4 ⇒ y/15 = z/12 (4)
Từ (3) và (4) ⇒ 2x/20 = y/15 = z/12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/20 = y/15 = z/12 = (2x - y + z)/(20 - 15 + 12) = 17/17 = 1
2x/20 = 1 ⇒ x = 1.20 : 2 = 10
y/15 = 1 ⇒ y = 1.15 = 15
z/12 = 1 ⇒ z = 1.12 = 12
Vậy x = 10; y = 15; z = 12
1.
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Ta có\(x-2y+3z=22\)
\(\Leftrightarrow2k-6k+15k=22\)
\(\Leftrightarrow11k=22\Leftrightarrow k=2\)
Do đó \(\hept{\begin{cases}\frac{x}{2}=2\Leftrightarrow x=4\\\frac{y}{3}=2\Leftrightarrow y=6\\\frac{z}{5}=2\Leftrightarrow z=10\end{cases}}\)
2.
Theo tính chất dãy tỉ số bằng nhau\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2-z^2}{4+9-25}=\frac{150}{-12}=-\frac{25}{2}\)
Ta có
\(\frac{x}{2}=-\frac{25}{2}\Leftrightarrow x=2.\left(-25\right):2=-25\)
\(\frac{y}{3}=-\frac{25}{2}\Leftrightarrow y=3.\left(-25\right):2=-\frac{75}{2}\)
\(\frac{z}{5}=-\frac{25}{2}\Leftrightarrow z=5.\left(-25\right):2=-\frac{125}{2}\)
Thử lại ko đúng cách đặt thì \(k^2=-\frac{25}{2}\left(ktm\right)\) mình nghĩ đề sai
b) (x-3).(2y+1)=7
(x-3).(2y+1)= 1.7 = (-1).(-7)
Cứ cho x - 3 = 1 => x= 4
2y + 1 = 7 => y = 3
Tiếp x - 3 = 7 => x = 10
2y + 1 = 1 => y = 0
x-3 = -1 ...=> x = 2
Giải:
a) Để:
\(x+22⋮x+1\)
\(\Leftrightarrow x+1+21⋮x+1\)
\(\Leftrightarrow21⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
\(\Leftrightarrow x=\left\{-2;0;-4;2;-8;6;-22;20\right\}\)
Vậy ...
b) \(\left(x-2\right)\left(2y+1\right)=17\)
Ta có bảng:
Vậy ...