Tìm GTLN : / x -y/ + / x - z/ + / y - z/ với 0 ≤ x , y , z ≤ 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopski ta có:
\(\frac{x}{x^3+y^2+z}=\frac{x\left(\frac{1}{x}+1+z\right)}{\left(x^3+y^2+z\right)\left(\frac{1}{x}+1+z\right)}\le\frac{1+x+xz}{\left(x+y+z\right)^2}=\frac{1+x+xz}{9}\)
Tương tự rồi cộng lại ta được:
\(T\le\frac{3+x+y+z+xy+yz+zx}{9}=\frac{6+xy+yz+zx}{9}\le\frac{6+\frac{\left(x+y+z\right)^2}{3}}{9}=1\)
Dấu "=" xảy ra tại \(x=y=z=1\)
P = x(x/2+1/yz) + y(y/2+1/zx) + z(z/2+1/xy)
= ½ [x(xyz +2)/(yz) + y(xyz +2)/(xz) + z(xyz +2)/(xy)]
= ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)
Lại có: xyz + 2 = xyz + 1 +1 ≥ 3 ³√(xyz)
Suy ra:
P = ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)
≥ 3/2 .3 ³√(xyz)/ ³√(xyz) = 9/2
Vậy P min = 9/2
Dấu = xra khi x = y = z = 1
Bài 1:
Ta có
A =x/(x+1) +y/(y+1)+z/(z+1)
A= 1- 1/(x+1)+1-1/(y+1) +1-1/(z+1)
A=3- [1/(x+1)+1/(y+1) +1/(z+1) ]
B = 1/(x+1)+1/(y+1) +1/(z+1)
Đặt x+1=a; y+1=b;z+1 =c
=>a+b+c=4
4B=4(1/a+1/b+1/c)
B= (a+b+c) (1/a+1/b+1/c)
4B =3+(a/b+b/a) +(a/c+c/a)+(b/c+c/a)
Từ (a-b)^2 ≥ 0 =>a^2+b^2 ≥ 2ab chia 2 vế cho ab
=> a/b+b/a ≥2 dấu "=" khi a=b
Tương tự có
a/c+c/a ≥2 ;b/c+c/b ≥2
=>4B ≥3+2+2+2=9
=>B ≥ 9/4
=>A ≤ 3-9/4 = 3/4
Vậy max A =3/4 khi a=b=c
=>x=y=z =1/3
Bài 2:
Giúp tui nha
\(P=\left|x\right|+\left|y\right|+\left|z\right|\)
Không mất tính tổng quát giả sử \(x\le y\le z\).
Khi đó \(x\le0;z\ge0\).
+) Nếu \(y\geq 0\) thì \(P=z-x+y=z-x-x-z=-2x\le2\).
+) Nếu \(y< 0\) thì \(P=z-x-y=z-x+z+x=2z\le2\).
Tóm lại \(P\le2\). Đẳng thức xảy ra khi, chẳng hạn x = -1; y = 0; z = 1.
Vậy Max P = 2 khi x = -1; y = 0; z = 1.
P=x/x+1 + y/y+1 + z/z+1=x+1-1/x+1 + y+1-1/y+1 + z+1-1/z+1
=1 - 1/x+1 + 1 - 1/y+1 + 1 - 1/z+1
=3 - (1/x+1 + 1/y+1 + 1/z+1)
Áp dụng bđt cauchy- schwarz dạng engel:
1/x+1 + 1/y+1 + 1/z+1 = 12/x+1 + 12/y+1 + 12/z+1 >/ (1+1+1)2/x+1+y+1+z+1 >/ 9/4 (do x+y+z=1)
=> P </ 3 - 9/4 = 3/4
maxP=3/4
Gỉa sử : \(x\ge y\ge z\) . Ta có :
A = x - y + x - z + y - z = 2x - 2z
Do : \(x\le3\Rightarrow2x\le6;z\ge0\Rightarrow-2z\le0\)
\(\Rightarrow A\le6\)
\(\Rightarrow A_{Max}=6\Leftrightarrow x=3;y=0;0\le y\le3\)
Cho mình hỏi : x >= y >= z ý tại sao lại có dòng 2 vậy bạn ?