K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

đầu tiên cần c/m x3+y3 >= xy(x+y) (chứng minh=biến đổi tương đương)

 ta có x3+y3+1 >= xy(x+y)+1=xy(x+y)+xyz=xy(x+y+z)

=>1/(x3+y3+1) <= 1/xy(x+y+z)

tương tự với 2 phân thức còn lại rồi cộng lại

27 tháng 1 2017

Cộng lại chưa cái gì cả

6 tháng 4 2019

Với x ; y > 0 , cần c/m : \(x^3+y^3\ge xy\left(x+y\right)\)

Ta có : \(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-xy\right)=\left(x+y\right)\left(x-y\right)^2\ge0\)

( điều này luôn đúng với mọi x ; y > 0 )

=> BĐT được c/m

Áp dụng vào bài toán , ta có :

\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{xz\left(x+z\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z;x,y,z>0\)

Đặt \(^{\hept{\begin{cases}x=a^2\\y=b^2\\z=c^2\end{cases}}\Rightarrow abc=1}\)

\(\Rightarrow P=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)

ÁP DỤNG BĐT AM-GM : 

\(a^2+b^2\ge2ab\)

\(b^2+1\ge2b\)

\(\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2}.\frac{1}{ab+b+1}\)

Tương tự \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}.\frac{1}{bc+c+1}\)

               \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ac+a+1}\)

Cộng từng vế các bđt trên ta được

\(P\le\frac{1}{2}\)

Dấu "=" xảy ra khi x=y=z=1

19 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\frac{\sqrt{3xy}}{xy}=\frac{\sqrt{3}}{\sqrt{xy}}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\frac{\sqrt{3}}{\sqrt{xz}}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\ge\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)=\sqrt{3}\cdot\left(\frac{\sqrt{x}}{\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{xyz}}+\frac{\sqrt{z}}{\sqrt{xyz}}\right)\)

\(=\sqrt{3}\cdot\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\ge\sqrt{3}\cdot\frac{3\sqrt[3]{\sqrt{xyz}}}{1}=3\sqrt{3}\)

Khi \(x=y=z=1\)

5 tháng 5 2019

Sử dụng bất đẳng thức: 

\(x^3+y^3\ge3xy\left(x+y\right)\)

Có: \(M=2018\left(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\right)\)

\(M\le2018\left(\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{xz\left(x+z\right)+xyz}\right)\)

\(M\le2018\left(\frac{xyz}{xy\left(x+y+z\right)}+\frac{xyz}{yz\left(x+y+z\right)}+\frac{xyz}{xz\left(x+y+z\right)}\right)\)

\(M\le2018\left(\frac{x+y+z}{x+y+z}\right)=2018\)

Vậy Max M=2018 khi x=y=z=1

5 tháng 5 2019

Sửa lại \(x^3+y^3\ge xy\left(x+y\right)\)

Xin lỗi

28 tháng 3 2016

Dễ dàng chứng minh được với mọi  \(x,y>0\) thì ta luôn có:

\(x^3+y^3\ge xy\left(x+y\right)\)  \(\left(\text{*}\right)\)

Thật vậy, xét hiệu  \(x^3+y^3-xy\left(x+y\right)=x^3-x^2y+-xy^2+y^3=x^2\left(x-y\right)-y^2\left(x-y\right)=\left(x-y\right)\left(x^2-y^2\right)\)

\(x^3+y^3-xy\left(x+y\right)=\left(x-y\right)^2\left(x+y\right)\ge0\)  (vì  \(\left(x-y\right)^2\ge0\)  với mọi  \(x,y\)  và  \(x+y>0\))

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(x-y=0\)  \(\Leftrightarrow\)  \(x=y\)

Vậy,  bất đẳng thức \(\left(\text{*}\right)\)  luôn đúng với mọi  \(x,y>0\)

Do đó, từ  \(\left(\text{*}\right)\)  ta suy ra:

\(x^3+y^3+xyz\ge xy\left(x+y\right)+xyz\)  (do  \(x,y,z>0\))

\(\Leftrightarrow\)  \(x^3+y^3+xyz\ge xy\left(x+y+z\right)\)

\(\Leftrightarrow\)  \(x^3+y^3+1\ge xy\left(x+y+z\right)\)  (do  \(xyz=1\))

Khi đó, vì hai vế  của bđt trên cùng dấu nên ta lấy nghịch đảo hai vế và đổi chiều bất đẳng thức, tức là:

\(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)   \(\left(1\right)\)

\(\Leftrightarrow\)  \(\frac{1}{x^3+y^3+1}\le\frac{xyz}{xy\left(x+y+z\right)}\)  (do  \(xyz=1\))

\(\Leftrightarrow\)  \(\frac{1}{x^3+y^3+1}\le\frac{z}{x+y+z}\)

Hoàn toàn tương tự với vòng hoán vị  \(x\)  \(\rightarrow\)  \(y\)  \(\rightarrow\)  \(z\), ta cũng chứng minh được:

\(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)  \(\left(2\right)\)  và  \(\frac{1}{z^3+x^3+1}\le\frac{y}{x+y+z}\)  \(\left(3\right)\)

Cộng từng vế  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), ta được:

\(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(x=y=z=1\)