Tìm số chính phương co 4 chữ số, sao cho 2 chữ số đầu giống nhau, hai chữ số cuối giống nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử aabb=n2
<=> a . 103 + a . 102 + b . 10 + b = n2
<=>11 ( 100a + b ) = n2
=>n2 chia hết cho 11
=> n chia hết cho 11
Do n2 có 4 chữ số nên
32 < n < 100
=> n = 33 , n = 44 , n = 55 ,... n = 99
Thử vào thì n = 88 là thỏa mãn
Vậy số đó là 7744
Gọi số chính phương phải tìm là \(A=m^2=\overline{aabb}\) và \(a,b\)là các chữ số,\(a\ne0\)
Ta có:\(A=\overline{aabb}=\overline{aa00}+\overline{bb}=11a\cdot100+11b=11\left[99a+\left(a+b\right)\right]\left(1\right)\)
Để A là số chính phương thì \(99a+\left(a+b\right)⋮11\)
\(\Rightarrow a+b⋮11\)vì \(99a⋮11\)
Mà \(1\le a+b\le18\)
\(\Rightarrow a+b=11\)
Thay vào \(\left(1\right)\) ta được:\(m^2=11\left(99a+11\right)=11^2\left(9a+1\right)\)
\(\Rightarrow9a+1\)là số chính phương
Thử a lần lượt từ 1 đến 9 theo điều kiện trên ta được a=7 thỏa mãn khi đó b=4.
\(\Rightarrow\)Số chính phương cần tìm là \(7744\)
Giả sử aabb=n^2
<=> a x10^3+ax10^2+bx10 +b=n^2
<=> 11 (100a+b)=n^2
=> n^2 chia hết cho 11
=> n chia hết cho 11
Do n^2 có 4 chữ số nên
32<n<100
=> n=33, n=44, n=55,...n=99
Thủ vào thì n=88 là thõa mãn
Vậy số đó là 7744
.+giả sử aabb=n^2
<=> a . 103 + a . 102 + b . 10 + b = n2
<=>11 ( 100a + b ) = n2
=>n2 chia hết cho 11
=> n chia hết cho 11
Do n2 có 4 chữ số nên
32 < n < 100
=> n = 33 , n = 44 , n = 55 ,... n = 99
Thử vào thì n = 88 là thỏa mãn
Vậy số đó là 7744
giả sử aabb = \(n^2\)
<=>a . \(10^3\) + a .\(10^2\)+b.10+b = \(n^2\)
<=>11(100a+b)= \(n^2\)
=>\(n^2\) chia hết cho 11
=>n chia hết cho 11
do \(n^2\) có 4 chữ số nên
32 < n <100
=>n = 33 , n = 44 , n = 55 ,...n = 99
thử vào thì n = 88 là thỏa mãn
vậy số đó là 7744
Câu hỏi của Hatsune Miku - Toán lớp 6 - Học toán với OnlineMath
Giả sử aabb = n2
<=> a . 103 + a . 102 + b . 10 + b = n2
<=> 11( 100a + b ) = n2
=> n2 chia hết cho 11
=> n chia hết cho 11
Do n2 có 4 chữ số nên
32 < n < 100
=> n = 33 , n = 44 , n = 55 , .......n = 99
Thử vào thì n = 88 là thỏa mãn
Vậy số đó là 7744
Gọi số chính phương đó là aabb
Ta có : \(aabb=n^2\)
\(aabb=1000a+100a+10b+b\)
\(=11\left(100a+b\right)=n^2\)
\(=11\left(99a+a+b\right)=n^2\left(1\right)\)
Do aabb chia hết cho 11 nên a + b chia hết cho 11
=> a + b = 11 \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta có :
\(n^2=11^2\left(9a+1\right)\)
=>\(9a+1\) là số chính phương
Thử a = 1 ; 2 ; 3 ; ... ; 9 ta thấy chỉ có 7 thỏa mãn
=> a = 7 => b = 4
Vậy số cần tìm là 7744
ko phải là 8811 mà phải là 7744 chứ(bởi vì 8811 ko phải là số chính phương
\(\le\)Cách 1 : Gọi các số chính phương phải tìm là n2 = aabb ( a,b \(\in\)N , 1 \(\le\)a \(\le\)9 , 0 \(\le\)b \(\le\)9 ).
Ta có n2 = aabb = 1100a + 11b = 11 . ( 100a + b ) = 11 . ( 99a + a + b ) (1).
Do đó 99a + a + b \(⋮\)11 nên a + b \(⋮\)11 , vậy a + b = 11.
Thay a + b = 11 vào (1) được n2 = 11 . ( 99a + 11 ) = 112 . ( 9a + 1 ) . Do đó 9a + 1 phải là số chính phương .
Thử với a = 1,2,3, ... , 9 chỉ có a = 7 cho 9a + 1 = 82 là số chính phương
Vậy a = 7 , suy ra b = 4 . Ta có 7744 = 112 . 82 .
Cách 2 : Biến đổi n2 = aabb = 11 . ( 100a + b ) = 11 . a0b , do đó a0b = 11k2 ( k \(\in\)N )
Ta có 10011k2 \(\le\)909 \(\Rightarrow\)9/1/11 \(\le\)k2 \(\le\)82/7/11 \(\Rightarrow\)4 \(\le\)k \(\le\)9 .
Lần lượt k = 4,5,6,7,8,9 ta được a0b = 11k2 thứ tự bằng 176 ,275,396,539,704,891, chỉ có số 704 có chữ số hàng chục bằng 0.
Vậy k = 8 và aabb = 11 . 11 . 82 = 882 = 7744.