Tứ giác ABCD có AB = BC và AC là phân giác góc A. Chứng minh rằng ABCD là hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Để chứng minh ABCD là hình thang ta cần chứng minh AD // BC.
Thông thường để chứng minh hai đường thẳng song song ta có thể chọn một trong các cách:
+ Chứng minh hai góc so le trong bằng nhau hoặc hai góc đồng vị bằng nhau.
+ Chứng minh hai đường thẳng cùng song song hoặc cùng vuông góc với đường thẳng thứ ba.
Ở bài này ta sẽ đi chứng minh hai góc so le trong bằng nhau là góc A2 và C1.
Theo giả thiết ta có:
Mà hai góc này ở vị trí so le trong
⇒ AD // BC
Vậy ABCD là hình thang (đpcm).
Xét tam giác ABC có AB = BC => ABC là tam giác cân
=> góc BAC = góc BCA Mà góc BAC = góc DAC (do AC là tia phân giác của góc A)
Nên góc CAD = góc BCA => BC // AD (so le trong) => ABCD là hình thang
Vậy...
Bài giải:
Ta có AB = BC (gt)
Suy ra ∆ABC cân
Nên ˆA1=ˆC1A1^=C1^ (1)
Lại có ˆA1=ˆA2A1^=A2^ (2) (vì AC là tia phân giác của ˆAA^)
Từ (1) và (2) suy ra ˆC1=ˆA2C1^=A2^
nên BC // AD (do ˆC1,ˆA2C1^,A2^ ở vị trí so le trong)
Vậy ABCD là hình thang
Ta có AB = BC (gt)
Suy ra: ∆ABC cân.
Nên \(\widehat{A_1}=\widehat{C_1}\) (1)
Lại có \(\widehat{A_1}=\widehat{A_2}\) (2) (vì AC là tia phân giác của ˆAA^)
Từ (1) và (2) suy ra \(\widehat{C_1}=\widehat{A_2}\)
nên BC // AD (do \(\widehat{A_1};\widehat{C_2}\) ở vị trí so le trong)
Vậy ABCD là hình thang.
Xét ▲ADC và ▲BCD có:
AD = BC ( gt )
AC = BD ( gt )
DC chung
=> ▲ADC = ▲BCD ( c.c.c )
=> góc D = góc C ( c.t.ứ )
cmtt ta đc góc A = Góc B
Mà Góc D + góc A + Góc C + Góc B=360o
=> 2GócA+2GócD=360o
-> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang
Vì góc D = góc C (cmt) nên ABCD là hình thang cân
Vì ΔABCΔABC cân tại B ( vì AB =BC)
=> Góc BAC = góc BCA (1)
Vì AC là phân giác góc A
=> góc BAC = góc CAD (2)
Từ (1) và (2) => góc BCA = góc CAD
Mà 2 góc này ở vị trí so le trong
=> AD // BC
=> ABCD là hình thang