K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2015

1734 và 1352 tick mk nha bạn

21 tháng 5 2017

Gọi thương là y ta có: abcd= ab xcd xy; cd= ab x ( cd xy -100); cd xy= ab xy x (cd xy -100) nhân 2 vế với y); cd xy -100 +100= ab xy x( cd xy-100) +100; 100 = (ab xy-1) x (cd xy -1). Vậy y lớn hơn hoặc bàng 2; cd xy lớn hơn hoacự bằng 19. ta tìm đc ab=13; cd 52; abcd=1352.

26 tháng 11 2019

Gọi thương là y ta có:

abcd= ab xcd xy; cd= ab x ( cd xy -100);

 cd xy= ab xy x (cd xy -100) nhân 2 vế với y);

cd xy -100 +100= ab xy x( cd xy-100) +100; 100

= (ab xy-1) x (cd xy -1).

Vậy y lớn hơn hoặc bàng 2; cd xy lớn hơn hoacự bằng 19. 

 ta tìm đc ab=13; cd 52; abcd=1352.

29 tháng 3 2016

abcd có gạch trên đầu ko?

29 tháng 3 2016

Câu trả lời đúng nhất ngắn gọn nhất

Xét abcd chia hết cho ab. cd. Đặt ab= m, cd=n thì 10m+n chia hết cho mm (1) . Đó n chia hết cho m . Đặt n=km(2) với k thuộc N , k<10, thay vào (1) ta được 100m+km chia hết cho mkm . Suy ra 100+k chia hết cho km . Suy ra 100 chia hết cho k suy ra k thuộc { 1,2,3,4,5}(vì k<10).

Thay vào 1,2,3,4,5 vào (1) và (2) ta được hai giá trị thỏa mãn đề bài là 1734 chia hết cho 17.34 và 1352 chia hết cho 13.52

8 tháng 4 2015

Tìm số abcd (gạch đầu), biết rằng số đó chia hết cho tích các số ab và cd (gạch đầu hết) 
Ta có 
abcd chia hết cho ab.cd 
100.ab+cd chia hết cho ab.cd 
 cd chia hết cho ab 
 Đặt cd=ab.k với k thuộc N và 1k9  
Thay vào  ta có
100.ab+k.ab chia hết cho k.ab.ab 
 100+k chia hết cho k.ab 
 100 chia hết cho k  
Từ  và   k thuộc {1;2;4;5} 
Xét k=1 thì thay vào  thì 101 chia hết cho ab (loại)
Với k=2 thì thay vào  102 chia hết cho 2.ab  51 chia hết cho ab và lúc đó thì 
ab=17 và cd=34(nhận) hoặc ab=51;cd=102 (loại)
Với k=4 thì ta có 104 chia hết cho 4.ab  26 chia hết cho ab nên 
ab=13;cd=52(nhận) hoặc ab=26;cd=104(loại)
Với k=5 thì thay vào  ta có 105 chia hết cho 5.ab  21 chia hết cho ab  ab=21 và cd=105 vô lí 
Vậy ta được 2 cặp số đó là 1734;1352

20 tháng 11 2016

what the heck

khó hiểu nhể

4 tháng 7 2015

Số abcd chia hết cho tích ab . cd => số abcd chia hết cho ab và cd

abcd = ab . 100 + cd

abcd chia hết cho ab => cd chia hết cho ab => cd = m.ab (m là chữ số do ab; cd là số có 2 chữ số)

abcd chia hết cho cd => ab. 100 chia hết cho cd  => 100.ab = n.cd

=> 100.ab = m.n.ab => m.n = 100  => m = 1; 2; 4; 5; 

+)  m = 1 => ab = cd : Số abcd = abab chia hết cho ab.ab => 101.ab chia hết cho tích ab.ab => 101 chia hết cho ab 

=> không có số nào thỏa mãn

+) m = 2 => cd = 2.ab : số abcd = 100ab + 2ab = 102.ab chia hết cho 2.ab. ab  =>   51 chia hết cho ab 

=> ab = 17 => cd = 34 => có số 1734

+) m = 4 => cd = 4.ab : số abcd = 104. ab chia hết cho 4.ab.ab => 26 chia hết cho ab  =  > ab = 13 => cd = 52

có Số 1352

+) m = 5 => cd = 5ab : số abcd = 105 .ab chia hết cho 5.ab.ab => 21 chia hết cho ab => ab =  21 => cd = 105 Loại

Vậy có 2 số thỏa mãn: 1734 và 1352

4 tháng 7 2015

Tìm số abcd (gạch đầu), biết rằng số đó chia hết cho tích các số ab và cd (gạch đầu hết) 
Ta có 
abcd chia hết cho ab.cd 
100.ab+cd chia hết cho ab.cd 
 cd chia hết cho ab 
Đặt cd=ab.k với k \(\in\) N và 1\(\le\)k\(\le\)9  
Thay vào  ta có
100.ab+k.ab chia hết cho k.ab.ab 
 =>100+k chia hết cho k.ab 
 => 100 chia hết cho k  
=> k \(\in\) {1;2;4;5} 
- Xét k=1 thì thay vào thì 101 chia hết cho ab (loại)
- Với k=2 thì thay vào 102 chia hết cho 2.ab  51 chia hết cho ab và lúc đó thì :
ab=17 và cd=34(nhận) hoặc ab=51;cd=102 (loại)
- Với k=4 thì ta có 104 chia hết cho 4.ab => 26 chia hết cho ab nên 
ab=13;cd=52(nhận) hoặc ab=26;cd=104(loại)
- Với k=5 thì thay vào  ta có 105 chia hết cho 5.ab => 21 chia hết cho ab => ab=21 và cd=105 vô lí 
                Vậy ta được 2 cặp số đó là 1734;1352

11 tháng 3 2016

Số abcd chia hết cho tích ab . cd => số abcd chia hết cho ab và cd

abcd = ab . 100 + cd

abcd chia hết cho ab => cd chia hết cho ab => cd = m.ab (m là chữ số do ab; cd là số có 2 chữ số)

abcd chia hết cho cd => ab. 100 chia hết cho cd  => 100.ab = n.cd

=> 100.ab = m.n.ab => m.n = 100  => m = 1; 2; 4; 5; 

+)  m = 1 => ab = cd : Số abcd = abab chia hết cho ab.ab => 101.ab chia hết cho tích ab.ab => 101 chia hết cho ab 

=> không có số nào thỏa mãn

+) m = 2 => cd = 2.ab : số abcd = 100ab + 2ab = 102.ab chia hết cho 2.ab. ab  =>   51 chia hết cho ab 

=> ab = 17 => cd = 34 => có số 1734

+) m = 4 => cd = 4.ab : số abcd = 104. ab chia hết cho 4.ab.ab => 26 chia hết cho ab  =  > ab = 13 => cd = 52

có Số 1352

+) m = 5 => cd = 5ab : số abcd = 105 .ab chia hết cho 5.ab.ab => 21 chia hết cho ab => ab =  21 => cd = 105 Loại

Vậy có 2 số thỏa mãn: 1734 và 1352

4 tháng 5 2016

Số abcd chia hết cho tích ab . cd => số abcd chia hết cho ab và cd

abcd = ab . 100 + cd

abcd chia hết cho ab => cd chia hết cho ab => cd = m.ab (m là chữ số do ab; cd là số có 2 chữ số)

abcd chia hết cho cd => ab. 100 chia hết cho cd  => 100.ab = n.cd

=> 100.ab = m.n.ab => m.n = 100  => m = 1; 2; 4; 5; 

+)  m = 1 => ab = cd : Số abcd = abab chia hết cho ab.ab => 101.ab chia hết cho tích ab.ab => 101 chia hết cho ab 

=> không có số nào thỏa mãn

+) m = 2 => cd = 2.ab : số abcd = 100ab + 2ab = 102.ab chia hết cho 2.ab. ab  =>   51 chia hết cho ab 

=> ab = 17 => cd = 34 => có số 1734

+) m = 4 => cd = 4.ab : số abcd = 104. ab chia hết cho 4.ab.ab => 26 chia hết cho ab  =  > ab = 13 => cd = 52

có Số 1352

+) m = 5 => cd = 5ab : số abcd = 105 .ab chia hết cho 5.ab.ab => 21 chia hết cho ab => ab =  21 => cd = 105 Loại

Vậy có 2 số thỏa mãn: 1734 và 1352

 
14 tháng 5 2016

Số abcd chia hết cho tích ab . cd

           => số abcd chia hết cho ab và cd

Ta có: abcd = ab . 100 + cd

           abcd chia hết cho ab

=> cd chia hết cho ab

=> cd = m.ab (m là chữ số do ab; cd là số có 2 chữ số)

            abcd chia hết cho cd

=> ab. 100 chia hết cho cd  

=> 100.ab = n.cd

=> 100.ab = m.n.ab

=> m.n = 100  

=> m = 1; 2; 4; 5; 

        +)  m = 1

=> ab = cd :

     Số abcd = abab chia hết cho ab.ab

=> 101.ab chia hết cho tích ab.ab

=> 101 chia hết cho ab 

=> không có số nào thỏa mãn

         +) m = 2

=> cd = 2.ab : số abcd = 100ab + 2ab = 102.ab chia hết cho 2.ab. ab  

=>   51 chia hết cho ab 

=> ab = 17

=> cd = 34

=> Vậy có số 1734

        +) m = 4

=> cd = 4.ab : số abcd = 104. ab chia hết cho 4.ab.ab

=> 26 chia hết cho ab  

=  > ab = 13

=> cd = 52

Vậy có số 1352

       +) m = 5

=> cd = 5ab : số abcd = 105 .ab chia hết cho 5.ab.ab

=> 21 chia hết cho ab

=> ab =  21

=> cd = 105 Loại

        Vậy có 2 số thỏa mãn: 1734 và 1352