K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

a/ đk: x khác -7/5 ; x khác -1/5

pt <=> \(\dfrac{\left(3x+2\right)\left(5x+1\right)}{\left(5x+7\right)\left(5x+1\right)}=\dfrac{\left(3x-1\right)\left(5x+7\right)}{\left(5x+7\right)\left(5x+1\right)}\)

\(\Rightarrow15x^2+13x+2=15x^2+16x-7\)

\(\Leftrightarrow15x^2+13x-15x^2-16x^2=-7-2\)

\(\Leftrightarrow-3x=-9\Leftrightarrow x=3\left(tm\right)\)

vậy x = 3

b/ đk: x khác -1/2; x khác -3

pt <=> \(\dfrac{\left(x+1\right)\left(x+3\right)}{\left(2x+1\right)\left(x+3\right)}=\dfrac{\left(0,5x+2\right)\left(2x+1\right)}{\left(2x+1\right)\left(x+3\right)}\)

\(\Rightarrow x^2+4x+3=x^2+4,5x+2\)

\(\Leftrightarrow x^2+4x-x^2-4,5x=2-3\)

\(\Leftrightarrow-0,5x=-1\Leftrightarrow x=2\left(tm\right)\)

vậy x = 2

15 tháng 6 2018

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}=\dfrac{\left(3x+2\right)-\left(3x-1\right)}{\left(5x+7\right)-\left(5x+1\right)}=\dfrac{3}{6}=\dfrac{1}{2}\)

\(\Rightarrow2\left(3x+2\right)=5x+7\)

\(\Rightarrow6x+4=5x+7\)

\(\Leftrightarrow x=3\)

Vậy x = 3

b) Ta có: \(\dfrac{0,5x+2}{x+3}=\dfrac{2\left(0,5x+2\right)}{2\left(x+3\right)}=\dfrac{x+4}{2x+6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+1}{2x+1}=\dfrac{0,5x+2}{x+3}=\dfrac{x+4}{2x+6}=\dfrac{\left(x+4\right)-\left(x+1\right)}{\left(2x+6\right)-\left(2x+1\right)}=\dfrac{3}{5}\)

\(\Rightarrow5\left(x+1\right)=3\left(2x+1\right)\)

\(\Rightarrow5x+5=6x+3\)

\(\Leftrightarrow x=2\)

16 tháng 7 2017

\(\dfrac{3x+2}{5x-7}=\dfrac{3x-1}{5x+1}\)

\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x-7\right)\)

\(\Leftrightarrow15x^2+3x+10x+2=15x^2-21x-5x-7\)

\(\Leftrightarrow15x^2+13x+2=15x^2-26x-7\)

\(\Leftrightarrow15x^2-15x^2-13x-2=26x-7\)

\(\Leftrightarrow-13x-2=26x-7\)

\(\Leftrightarrow26x+13x=7+2\)

\(\Leftrightarrow39x=9\Leftrightarrow x=\dfrac{3}{13}\)

b tương tự

1: \(\Leftrightarrow\left(x+1\right)^2=4\)

=>x+1=2 hoặc x+1=-2

=>x=1 hoặc x=-3

2: \(\Leftrightarrow7x-21=5x+25\)

=>2x=46

=>x=23

3: \(\Leftrightarrow x^2+4x+3=x^2+0.5x+4x+2\)

=>4,5x+2=4x+3

=>x=1

8 tháng 2 2022

a, \(\Rightarrow10x-4+6x=6+15-9x\Leftrightarrow7x=25\Leftrightarrow x=\dfrac{25}{7}\)

b, \(\Rightarrow2\left(3x^2+5x-2\right)-6x^2-3=33\Leftrightarrow10x-7=33\Leftrightarrow x=4\)

c, \(\Rightarrow12x-10x-4=21-9x\Leftrightarrow11x=25\Leftrightarrow x=\dfrac{25}{11}\)

d, \(\Rightarrow3x-3+2x-2-x+1=12\Leftrightarrow4x=16\Leftrightarrow x=4\)

8 tháng 2 2022

\(\dfrac{5x-2}{3}+x=1+\dfrac{5-3x}{2}\)

\(\Leftrightarrow\dfrac{5x-2+3x}{3}=\dfrac{2+5-3x}{2}\)

\(\Leftrightarrow\dfrac{8x-2}{3}=\dfrac{7-3x}{2}\)

\(\Leftrightarrow16x-4=21-9x\)

\(\Leftrightarrow16x+9x=21+4\)

\(\Leftrightarrow25x=25\)

\(\Leftrightarrow x=1\)

a: \(\Leftrightarrow7\left(7-3x\right)+12\left(5x+2\right)=84\left(x+13\right)\)

\(\Leftrightarrow49-21x+60x+24=84x+1092\)

\(\Leftrightarrow39x-84x=1092-73\)

=>-45x=1019

hay x=-1019/45

b: \(\Leftrightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)

=>21x+63-14=20x+36-49x+63

=>21x+49=-29x+99

=>50x=50

hay x=1

c: \(\Leftrightarrow7\left(2x+1\right)-3\left(5x+2\right)=21x+63\)

=>14x+7-15x-6-21x-63=0

=>-22x-64=0

hay x=-32/11

d: \(\Leftrightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-17\cdot105\)

=>70x-105-30x-45=84x+63-1785

=>40x-150-84x+1722=0

=>-44x+1572=0

hay x=393/11

19 tháng 2 2022

a, msc 12.7=84 

Chuyển vế về =0 rồi làm

b,msc 28

c,làm tương tự

22 tháng 3 2021

a, 3x - 7 = 0

<=> 3x = 7

<=> x = 7/3

b, 8 - 5x = 0

<=> -5x = -8

<=> x = 8/5

c, 3x - 2 = 5x + 8

<=> -2x = 10

<=> x = -5

e) Ta có: \(\left(5x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=3\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{5};3\right\}\)

18 tháng 10 2021

b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)

\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)

\(=\dfrac{2y^2+8y+12}{y-1}\)

16 tháng 4 2018

\(\text{a) }\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\\ \Leftrightarrow4\left(5x^2-3x\right)+5\left(3x+1\right)< 10x\left(2x+1\right)-15\\ \Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-15\\ \Leftrightarrow20x^2+3x-20x^2-10x< -15-5\\ \Leftrightarrow-7x< -20\\ \Leftrightarrow x>\dfrac{20}{7}\)

Vậy bất phương trình có nghiệm \(x>\dfrac{20}{7}\)

\(\text{b) }\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\\ \Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)\ge4x\left(1-3x\right)-15x\\ \Leftrightarrow20x-80-12x^2-6x\ge4x-12x^2-15x\\ \Leftrightarrow-12x^2+14x+12x^2+11x\ge80\\ \Leftrightarrow25x\ge80\\ \Leftrightarrow x\ge\dfrac{16}{5}\)

Vậy bất phương trình có nghiệm \(x\ge\dfrac{16}{5}\)

\(\text{c) }\left(x+3\right)^2\le x^2-7\\ \Leftrightarrow x^2+6x+9\le x^2-7\\ \Leftrightarrow x^2+6x-x^2\le-7-9\\ \Leftrightarrow6x\le-16\\ \Leftrightarrow x\le-\dfrac{8}{3}\)

Vậy bất phương trình có nghiệm \(x\le-\dfrac{8}{3}\)

a: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(2x+3\right)-100\)

\(\Leftrightarrow20x^2-12x+15x-5< 20x^2+30x-100\)

=>3x-5<=30x-100

=>30x-100>3x-5

=>27x>95

hay x>95/27

b: \(\Leftrightarrow4\left(5x-2\right)-6\left(2x^2-x\right)< 4x\left(1-3x\right)-15x\)

\(\Leftrightarrow20x-8-12x^2+6x< 4x-12x^2-15x\)

=>26x-8<-11x

=>37x<8

hay x<8/37