Cho tam giác ABC (AB < AC) có hai đường cao BD và CE cắt nhau tại trực tâm H. Lấy I là trung điểm của BC
a, Gọi K là điểm đối xứng của H qua I. Chứng minh tứ giác BHCK là hình bình hành
b, Xác định tâm O của đường tròn qua các điểm A, B, K, C
c, Chứng minh OI và AH song song
d, Chứng minh BE.BA + CD.CA = \(BC^2\)