K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Ta có: \(\dfrac{10^{50}-3}{10^{50}+1}\)<\(\dfrac{10^{50}+1}{10^{50}+1}\)<\(\dfrac{10^{50}+1}{10^{50}-3}\)

=>\(\dfrac{10^{50}-3}{10^{50}+1}\)<\(\dfrac{10^{50}+1}{10^{50}-3}\)

vậy (đpcm)

19 tháng 5 2017

Ta có:

\(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=1+\frac{3}{10^{50}-1}\)

\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=1+\frac{3}{10^{50}-3}\)

\(10^{50}-1>10^{50}-3\Rightarrow\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\)(2 phân số có cùng tử số, mẫu số của phân số nào lớn hơn thì phân  

                                                                                             số đó nhỏ hơn)

\(\Rightarrow1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\Rightarrow A< B\)     

19 tháng 5 2017

\(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=1+\frac{3}{10^{50}-1}.\)

\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=1+\frac{3}{10^{50}-3}.\)

Do 1050-1 > 1050-3 ; => \(1+\frac{3}{10^{50}-3}>1+\frac{3}{10^{50}-1}\)

=> B > A

11 tháng 5 2017

Ta có: \(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=\frac{10^{50}-1}{10^{50}-1}+\frac{3}{10^{50}-1}=1+\frac{3}{10^{50}-1}\)

\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=\frac{10^{50}-3}{10^{50}-3}+\frac{3}{10^{50}-3}=1+\frac{3}{10^{50}-3}\)

Vì \(\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\Rightarrow1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\Rightarrow A< B\)

4 tháng 6 2017

Ta thấy \(10^{50}>10^{50}-3\)

\(\Rightarrow B=\frac{10^{50}}{10^{50}-3}>\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)

Vậy \(A< B\)

Mình chưa học đến đó nên mình tịt

9 tháng 5 2018

\(A=\frac{10^{50}+2}{10^{50}+1}=\frac{2}{1}=2\)

\(B=\frac{10^{50}}{10^{50}-3}=\frac{-1}{3}\)

\(\Rightarrow A>B\)

19 tháng 7 2018

a)\(10^{20}=\left(10^2\right)^{10}=100^{10}\left(1\right)\)

\(9^{30}=\left(9^3\right)^{10}=729^{10}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow9^{30}>10^{20}\)

b) \(\left(-5\right)^{30}=5^{30}=125^{10}\)

\(\left(-3\right)^{50}=3^{50}=243^{10}\)

\(\Rightarrow\left(-3\right)^{50}>\left(-5\right)^{30}\)

c)\(64^8=\left(2^6\right)^8=2^{48}\)

\(16^{12}=\left(2^4\right)^{12}=2^{48}\)

\(\Rightarrow64^8=16^{12}\)

11 tháng 5 2018

\(\frac{10^{50}+1}{10^{50}-3}=\frac{\left(10^{50}-3\right)+4}{10^{50}-3}=1+\frac{4}{10^{50}-3}\)

\(\frac{10^{50}+3}{10^{50}-1}=\frac{\left(10^{50}-1\right)+4}{10^{50}-1}=1+\frac{4}{10^{50}-1}\)

Ta so sánh \(\frac{4}{10^{50}-3}với\frac{4}{10^{50}-1}\) . Ta có \(\frac{4}{10^{50}-3}\)  > \(\frac{4}{10^{50}-1}\)     => 1050+1/1050-3  > 1050+3/1050-1

11 tháng 5 2018

Ta có :  

\(\frac{10^{50}+1}{10^{50}-3}=\frac{10^{50}-3+4}{10^{50}-3}=1+\frac{4}{10^{50}-3}\)

\(\frac{10^{50}+3}{10^{50}-1}=\frac{10^{50}-1+4}{10^{50}-1}=1+\frac{4}{10^{50}-1}\)

Do \(\frac{4}{10^{50}-3}>\frac{4}{10^{50}-1}\)

\(\Rightarrow1+\frac{4}{10^{50}-3}>1+\frac{4}{10^{50}-1}\)

\(\Rightarrow\frac{10^{50}+1}{10^{50}-3}>\frac{10^{50}+3}{10^{50}-1}\)

Chúc bạn học tốt !!! 

23 tháng 5 2017

C1:A = \(\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=\frac{10^{50}-1}{10^{50}-1}+\frac{3}{10^{50}-1}\)
\(1+\frac{3}{10^{50}-1}\)
B = \(\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=\frac{10^{50}-3}{10^{50}-3}+\frac{3}{10^{50}-3}\)
\(1+\frac{3}{10^{50}-3}\)
Vì \(\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\)=) \(1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\)=) \(A< B\)
C2: Áp dụng tính chất : Nếu \(\frac{a}{b}>1\)=) \(\frac{a}{b}>\frac{a+m}{b+m}\)
Vì B > 1 =) B > \(\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)
(=) B > A