c/m vs moi so nguyen a thi N=\(\left(a-1\right)^2+a^2+a^2\left(a-1\right)^2\)la số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1^2+2^2+...+n^2=\frac{1}{6}\cdot n\left(n+1\right)\left(2n+1\right)\)
suy ra a=1/6
\(A=\left(x^2+y^2+z^2\right)\left[\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\right]+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2\right)^2+2\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\) là một số chính phương (đpcm)
bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá
bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được
By AM-GM: \(3\le ab+bc+ca\)
Ta có: \(6-\dfrac{18}{a^2+b^2+c^2}=6.\left(1-\dfrac{3}{a^2+b^2+c^2}\right)=\dfrac{6\left(a^2+b^2+c^2-3\right)}{a^2+b^2+c^2}\ge\dfrac{6\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2}=3\sum\dfrac{\left(a-b\right)^2}{a^2+b^2+c^2}\)
Giờ ta chỉ việc chứng minh
\(\sum\dfrac{\left(ab-c^2\right)\left(a-b\right)^2}{\left(a^2+c^2\right)\left(c^2+b^2\right)}+\sum\dfrac{3\left(a-b\right)^2}{a^2+b^2+c^2}\ge0\)
\(\Leftrightarrow\sum\left(a-b\right)^2\left[\dfrac{ab\left(a^2+b^2+ab\right)+2\left(a^2+c^2\right)\left(b^2+c^2\right)}{\left(a^2+b^2+c^2\right)\left(a^2+c^2\right)\left(b^2+c^2\right)}\right]\ge0\)(đúng)
Dấu = xảy ra khi a=b=c=1
@Akai Haruma @TFBoys @Hà Nam Phan Đình @Mei Sama (Hân) @Ace Legona @Hung nguyen.........
Bài 3: y hệt bài mình đã từng đăng Câu hỏi của Thắng Nguyễn - Toán lớp 9 - Học toán với OnlineMath- trước mình có ghi lời giải mà lâu ko xem giờ quên r` :)
1) Đặt n+1 = k^2
2n + 1 = m^2
Vì 2n + 1 là số lẻ => m^2 là số lẻ => m lẻ
Đặt m = 2t+1
=> 2n+1 = m^2 = (2t+1)^2
=> 2n+1 = 41^2 + 4t + 1
=> n = 2t(t+1)
=> n là số chẵn
=> n+1 là số lẻ
=> k lẻ
+) Vì k^2 = n+1
=> n = (k-1)(k+1)
Vì k -1 và k+1 là 2 số chẵn liên tiếp
=> (k+1)(k-1) chia hết cho *
=> n chia hết cho 8
+) k^2 + m^2 = 3a + 2
=> k^2 và m^2 chia 3 dư 1
=> m^2 - k^2 chia hết cho 3
m^2 - k^2 = a
=> a chia hết cho 3
Mà 3 và 8 là 2 số nguyên tố cùng nhau
=> a chia hết cho 24
\(=a^2\left[1+\left(a-1\right)^2\right]+\left(a-1\right)^2=a^2\left(a^2-2a+2\right)+\left(a-1\right)^2\)
= \(a^4-2a^3+2a^2+\left(a-1\right)^2=a^4-2a^2\left(a-1\right)+\left(a-1\right)^2\)
\(=\left(a^2-a+1\right)^2\)
Vì a nguyên => a^2 -a + 1 nguyên => N là số chính phương