Chứng minh
a.2a^3 + 8a < hoặc = a^4 +16
b. x^2+16>= 2x^2+8x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a^3+8a\le a^4+16\)
\(\Leftrightarrow2a^3+8a-a^4-16\le0\)
\(\Leftrightarrow\left(2a^3-a^4\right)+\left(8a-16\right)\le0\)
\(\Leftrightarrow-a^3\left(a-2\right)+8\left(a-2\right)\le0\)
\(\Leftrightarrow-\left(a-2\right)\left(a^3-8\right)\le0\Leftrightarrow-\left(a-2\right)^2\left(a^2+2a+4\right)\le0\)
TA THẤY : \(\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\)\(\Leftrightarrow-\left(a-2\right)^2\left(a^2+2a+4\right)\le0\)\(\Leftrightarrow2a^3+8a\le a^4+16\left(dpcm\right)\)
DẤU " = " XẢY RA KHI X = 2
TK CHO MK NKA !!!
Ta có:a4+16-2a3-8a
=(a4-8a2+16)-(2a3-8a2+8a)
=(a2-4)2-2a(a-2)2
=(a-2)2[(a+2)2-2a]
=(a-2)2(a2+4a+4-2a)
=(a-2)2(a2+2a+4)
=(a-2)2[(a+1)2+3]\(\)\(\ge\)0 với mọi a
=>a4+16-2a3-8a \(\ge\)0
<=>a4+16\(\ge\)2a3+8a
Ta có:
A=1/3 - 2/3^2+3/3^3 - 4/3^4+ ... - 100/3^100
=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99
=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100
=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99
=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1...
<=>16A=3-101/3^99-100/3^100
<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16
Suy ra A<3/16
x4+16\(\ge\)2x3+8x
\(\Leftrightarrow\)x4-2x3-8x+16\(\ge\)0
\(\Leftrightarrow\)(x-2)(x3-8)\(\ge\)0
\(\Leftrightarrow\)(x-2)2(x2+x+4)\(\ge\)0 (*)
Ta có: (x-2)2\(\ge\)0
Và x2+x+4=(x+\(\dfrac{1}{2}\))2+\(\dfrac{15}{4}\)>0
Nên (*) luôn đúng
Vậy x4+16\(\ge\)2x3+8x
cảm ơn bạn nhìu nhờ bạn làm bài này đc ko ạ
chứng minh 2a^3+8a<=a^4+16
a)\(2a^3+8a\le a^4+16\)
\(\Leftrightarrow a^4-2a^3-8a+16\ge0\)
\(\Leftrightarrow a^3\left(a-2\right)-8\left(a-2\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)\left(a^3-8\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)\left(a-2\right)\left(a^2+2a+4\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\)(luôn đúng)
=>đpcm
Nhật Linh lm lun:))
\(a^2+2a+4=a^2+2a+1+3=\left(a+1\right)^2+3>0\left(đpcm\right)\)