Cho hình thang cân ABCD có AD song song với BCvà AD=2CD= 2BC. Chứng minh rằng bốn điểm A,B,C,Dcùng nằm trên một đường tròn tâm Ovà AC⊥OB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABCD có
\(\widehat{A}+\widehat{D}=180^0\)
Do đó: ABCD là tứ giác nội tiếp
hay A,B,C,D cùng thuộc một đường tròn
Hình bạn tự vẽ nha!!
a.)Ta có:\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)
\(BE\perp AD\Rightarrow\widehat{AEB}=90^0\)
Xét tứ giác \(AEHB\)có:
\(\widehat{AHB}=\widehat{AEB}\left(=90^0\right)\)
Mà 2 góc này cùng nhìn \(AB\)
\(\Rightarrow\)Tứ giác\(AEHB\)nội tiếp (o)
\(\Rightarrow\)\(A,E,H,B\in\)đường tròn.
b.)Có tứ giác \(AEHB\)nội tiếp
\(\Rightarrow\widehat{DEH}=\widehat{HBA}\)
\(\Rightarrow\widehat{DEH}=\widehat{CBA}\)
Trong (o) có:\(\widehat{CDA}=\widehat{CBA}\)(2 góc nội tiếp chắn cung \(AC\))
\(\Rightarrow\widehat{CDA}=\widehat{DEN}\left(=\widehat{CBA}\right)\)
Mà 2 góc này ở vị trí SLT
\(\Rightarrow EH//CD\left(\text{đ}pcm\right)\)
a: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB\(\sim\)ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)
b: Xét ΔCAD có OE//AD
nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)
Xét ΔBDC có OF//BC
nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)
=>DE=CF
Vì \(AD//BC\) nên \(\widehat{A}+\widehat{B}=180\left(trong.cùng.phía\right)\)
\(\Rightarrow ABCD\) nt đường tròn
Vì \(OA=OC=R\) nên \(O\in\) đường trung trực AC
Vì \(AB=BC=\dfrac{1}{2}AD\) nên \(B\in\) đường trung trực AC
\(\Rightarrow OB\) là đường trung trực của \(AC\)
Vậy \(OB\perp AC\)
giúp mik