K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

Vì \(AD//BC\) nên \(\widehat{A}+\widehat{B}=180\left(trong.cùng.phía\right)\)

\(\Rightarrow ABCD\) nt đường tròn

Vì \(OA=OC=R\) nên \(O\in\) đường trung trực AC

Vì \(AB=BC=\dfrac{1}{2}AD\) nên \(B\in\) đường trung trực AC

\(\Rightarrow OB\) là đường trung trực của \(AC\)

Vậy \(OB\perp AC\)

12 tháng 9 2021

giúp mik

 

Xét tứ giác ABCD có 

\(\widehat{A}+\widehat{D}=180^0\)

Do đó: ABCD là tứ giác nội tiếp

hay A,B,C,D cùng thuộc một đường tròn

18 tháng 4 2020

Hình bạn tự vẽ nha!!

a.)Ta có:\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\) 

              \(BE\perp AD\Rightarrow\widehat{AEB}=90^0\)

Xét tứ giác \(AEHB\)có:

            \(\widehat{AHB}=\widehat{AEB}\left(=90^0\right)\)

Mà 2 góc này cùng nhìn \(AB\)

\(\Rightarrow\)Tứ giác\(AEHB\)nội tiếp (o)

\(\Rightarrow\)\(A,E,H,B\in\)đường tròn.

b.)Có tứ giác \(AEHB\)nội tiếp

\(\Rightarrow\widehat{DEH}=\widehat{HBA}\)

\(\Rightarrow\widehat{DEH}=\widehat{CBA}\)

Trong (o) có:\(\widehat{CDA}=\widehat{CBA}\)(2 góc nội tiếp chắn cung \(AC\))

\(\Rightarrow\widehat{CDA}=\widehat{DEN}\left(=\widehat{CBA}\right)\)

Mà 2 góc này ở vị trí SLT

\(\Rightarrow EH//CD\left(\text{đ}pcm\right)\)

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB\(\sim\)ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)

=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)

=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)

=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)

=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)

b: Xét ΔCAD có OE//AD

nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)

Xét ΔBDC có OF//BC

nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)

=>DE=CF