\(\dfrac{91}{1.4}\)+\(\dfrac{91}{4.7}\)+\(\dfrac{91}{7.10}\)+...+\(\dfrac{91}{88.91}\)=30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{91}{1.4}+\frac{91}{4.7}+\frac{91}{7.10}+...+\frac{91}{88.91}\)
\(=91.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{88.91}\right)\)
\(=91.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{88}-\frac{1}{91}\right)\)
\(=91.\left(\frac{1}{1}-\frac{1}{91}\right)\)
\(=91.\frac{90}{91}=\frac{91.90}{91}\)
\(=90\)
\(\frac{91}{1.4}+\frac{91}{4.7}+\frac{9}{7.10}+...+\frac{91}{88.91}\)
= \(\frac{91}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{88.91}\right)\)
= \(\frac{91}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{88}-\frac{1}{91}\right)\)
= \(\frac{91}{3}.\frac{90}{91}=30\) (đfcm)
a) \(\frac{91}{1.4}+\frac{91}{4.7}+...+\frac{91}{88.91}=\frac{91}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{88.91}\right)\)
\(=\frac{91}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{88}-\frac{1}{91}\right)=\frac{91}{3}\left(1-\frac{1}{91}\right)=\frac{91}{3}.\frac{90}{91}=30\left(\text{đpcm}\right)\)
a: \(\dfrac{-13}{40}< \dfrac{-12}{40}\)
\(\dfrac{-5}{6}>\dfrac{-91}{104}\)
9: \(=\dfrac{47}{51}\cdot\dfrac{17}{94}-\dfrac{47}{51}\cdot\dfrac{53}{91}-\dfrac{53}{91}\cdot\dfrac{91}{53}+\dfrac{53}{91}\cdot\dfrac{47}{51}\)
\(=\dfrac{1}{6}-1=-\dfrac{5}{6}\)
10: \(=\dfrac{13}{19}\cdot\dfrac{19}{26}-\dfrac{13}{19}\cdot\dfrac{71}{43}+\dfrac{71}{43}\cdot\dfrac{13}{19}-\dfrac{71}{43}\cdot\dfrac{86}{71}\)
\(=\dfrac{1}{2}-2=-\dfrac{3}{2}\)
\(\dfrac{1909-x}{91}+\dfrac{1907-x}{93}+\dfrac{1905-x}{95}+\dfrac{1903}{97}+4=0\) ( Sửa đề)
⇔ \(\dfrac{1909-x}{91}+1+\dfrac{1907-x}{93}+1+\dfrac{1905-x}{95}+1+\dfrac{1903}{97}+1=0\) ⇔ \(\dfrac{2000-x}{91}+\dfrac{2000-x}{93}+\dfrac{2000-x}{95}+\dfrac{2000-x}{97}=0\)
⇔ \(\left(2000-x\right)\left(\dfrac{1}{91}+\dfrac{1}{93}+\dfrac{1}{95}+\dfrac{1}{97}\right)=0\)
Do : \(\dfrac{1}{91}+\dfrac{1}{93}+\dfrac{1}{95}+\dfrac{1}{97}>0\)
\(\text{⇔}2000-x=0\)
\(\text{⇔}x=2000\)
Vậy ,....
1/
a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)
b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993
2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993
2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993
2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993
2.(1 − 1/x+1) = 3984/1993
1 − 1/x + 1= 3984/1993 :2
1 − 1/x+1 = 1992/1993
1/x+1 = 1 − 1992/1993
1/x+1=1/1993
<=>x+1 = 1993
<=>x+1=1993
<=> x+1=1993
<=> x = 1993-1
<=> x = 1992
\(VT=91\left(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+...+\dfrac{1}{88\cdot91}\right)\)
\(=\dfrac{91}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{88\cdot91}\right)\)
\(=\dfrac{91}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{88}-\dfrac{1}{91}\right)\)
\(=\dfrac{91}{3}\cdot\dfrac{90}{91}=30\)