K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 9 2021

Pt trùng phương chỉ có các trường hợp

- Vô nghiệm

- Có 2 nghiệm phân biệt

- Có 4 nghiệm phân biệt

- Có 2 nghiệm kép

- Có 3 nghiệm (trong đó 2 nghiệm pb và 1 nghiệm kép \(x=0\))

Không tồn tại trường hợp có 3 nghiệm pb

11 tháng 9 2021

\(x^4-2mx^2+\left(2m-1\right)=0\left(1\right)\)

Đặt \(t=x^2\), pt trở thành:

\(t^2-2mt+\left(2m-1\right)=0\left(2\right)\)

Để pt(1) có 3 nghiệm thì pt(2) có 1 nghiệm dương khác 0 và 1 nghiệm bằng 0

\(\Leftrightarrow2m-1=0\Leftrightarrow m=\dfrac{1}{2}\\ \Leftrightarrow t^2-t=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\\t=1\end{matrix}\right.\left(nhận\right)\)

Vậy \(m=\dfrac{1}{2}\)

 

PT có 2 nghiệm phân biệt

\(\Leftrightarrow\text{Δ}>0\Leftrightarrow\left(2m\right)^2-4.\left(m+1\right)\left(m-1\right)>0\) 

\(\Leftrightarrow4m^2-4\left(m^2-1\right)>0\Leftrightarrow4>0\)(luôn đúng)

Vậy PT luôn có 2 nghiệm phân biệt

Theo hệ thức Viét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2m}{m+1}\\x_1.x_2=\dfrac{m-1}{m+1}\end{matrix}\right.\)

Mà theo GT thì ta có:

\(x_1^2+x_2^2=5\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=5\)

\(\Leftrightarrow\left(\dfrac{-2m}{m+1}\right)^2-2.\dfrac{m-1}{m+1}=5\)

\(\Leftrightarrow\dfrac{4m^2}{\left(m+1\right)^2}-\dfrac{2\left(m-1\right)}{m+1}=5\)

\(\Leftrightarrow\dfrac{1}{m+1}\left[\dfrac{4m^2}{m+1}-2\left(m-1\right)\right]=5\)

\(\Leftrightarrow\dfrac{2m^2+2}{m^2+2m+1}=5\)

\(\Leftrightarrow2m^2+2=5m^2+10m+5\)

\(\Leftrightarrow3m^2+10m+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{3}\\m=-3\end{matrix}\right.\)

 

 

13 tháng 3 2016

mình ko biết rất xin lỗi

ai tích mình tíc lại

ai tích mình tích lại

aih lại tích mình tích lại

12 tháng 4 2018

Hỏi đáp Toán

NV
12 tháng 9 2021

\(\Leftrightarrow x^3-3x^2+2-\left(3x^2-2x-1\right)m=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)-\left(x-1\right)\left(3mx+m\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(3m+2\right)x-m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(3m+2\right)x-m-2=0\left(1\right)\end{matrix}\right.\)

(1) luôn có 2 nghiệm pb. Để pt có 3 nghiệm pb \(\Rightarrow1-\left(3m+2\right)-m-2\ne0\Rightarrow m\ne-\dfrac{3}{4}\)

TH1: \(x_3=1\) và \(x_1;x_2\) là nghiệm của (1)

\(\Rightarrow3m+2=2\Rightarrow m=0\) (thỏa mãn)

TH2: \(x_1=1\) và \(x_2;x_3\) là nghiệm của (1)

Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_2=2x_3-1\\x_2+x_3=3m+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=2x_3-1\\x_3=m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=2m+1\\x_3=m+1\end{matrix}\right.\)

Thế vào \(x_2x_3=-m-2\)

\(\Rightarrow\left(2m+1\right)\left(m+1\right)=-m-2\)

\(\Rightarrow2m^2+4m+3=0\) (vô nghiệm)

Vậy \(m=0\)

12 tháng 9 2021

e cam on , vay em lam dung roi :^^

1 tháng 6 2016
  • Phương trình: \(x^2-5x+3m+1=0.\)ở dạng tổng quát \(ax^2+bx+c=0\)có hệ số \(a=1;b=-5;c=3m+1\)
  • \(x_1;x_2\)là nghiệm của phương trình thì: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=5\left(a\right)\\x_1\cdot x_2=\frac{c}{a}=3m+1\left(b\right)\end{cases}}\)
  • \(\left|x_1^2-x_2^2\right|=_{ }\left|\left(x_1-x_2\right)\cdot\left(x_1+x_2\right)\right|=5\cdot\left|x_1-x_2\right|=15\Rightarrow\left|x_1-x_2\right|=3\)
  • Nếu \(x_1-x_2=3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=4;x_2=1\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)
  • Nếu \(x_1-x_2=-3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=1;x_2=4\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)
  • Vậy, với m=1 thì PT trên có 2 nghiệm phân biệt thỏa mãn điều kiện đề bài.
 
10 tháng 6 2017

đề sai rồi

10 tháng 6 2017

Đề sai rồi nhé b