Chứng minh đa thức sau vô nghiệm
A= 2014x4-2014x3+2015x2-x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F(\(x\)) = \(x^{2024}\) + (\(x-1\))4 + 10
F(\(x\)) = ( \(x^{1012}\) )2 + ((\(x\) - 1)2)2 + 10
vì (\(x^{2012}\))2 ≥ 0 ; ((\(x\) -1)2)2 ≥ 0
⇒ F(\(x\)) ≥ 0 + 0 + 10 = 10 > 0 (∀ \(x\))
Vậy F(\(x\)) vô nghiệm ( đpcm)
Bài làm:
Ta có: \(x^2-x+1=0\)
\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)(vô lý)
=> không tồn tại x thỏa mãn
=> Đa thức vô nghiệm
1. Tìm nghiệm của đa thức sau :
a) 9x + 2x - x
b) 25 - 9x
2. Chứng minh đa thức vô nghiệm :
x2 + x4 + 1
1) a) 9x+2x-x=0
11x-x=0
10x=0
x=0
b) 25-9x=0
9x=25
x=25/9
2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)
\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)
\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)
mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm
1)
a) Ta có :
9x + 2x - x = 0
( 9 + 2 - 1 )x = 0
10x = 0
x = 0 : 10
x = 0
Vậy x = 0 là nghiệm của đa thức 9x + 2x - x
b) Ta có :
25 - 9x = 0
9x = 25
x = 25 ; 9
x = 25/9
Vậy x = 25/9 là nghiệm của đa thức 25 - 9x
2. Ta có :
Vì x2 luôn > 0 với mọi giá trị của x
x4 luôn lớn hơn 0 với mọi giá trị x
1 > 0
Vậy x2 + x4 + 1 > với mọi giá trị x
Hay da thức x2 + x4 + 1 vô nghiệm
Ta có
x^2 luôn >= 0 với mọi x
x>=0 với mọi x
1>0
Nên đa thức P(x) vô nghiệm
\(x^2-5x+30=x^2-2.\dfrac{5}{2}.x+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{5}{2}\right)^2+30=\left(x-\dfrac{5}{2}\right)^2+\dfrac{95}{4}\ge\dfrac{95}{4}>0\) => Đa thức vô nghiệm \(\forall x\)
Ta có:
\(\left(x-4\right)^2\ge0\)
\(\left(x+5\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi
\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn
=> đa thức vô nghiệm
Ta có: (x-3)2 \(\ge0\forall x\)
\(\Rightarrow x^2\ge9\forall x\)
\(\Rightarrow x^2+\left(x-3\right)^2\ge9\forall x\)
Vậy đa thức trên vô nghiệm.
\(x^2+2x+2=x^2+x+x+1+1=x\left(x+1\right)+\left(x+1\right)+1\)
\(=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow x^2+2x+2\) vô nghiệm