cho a, b, c là các số thực dương thỏa mãn : 6a + 2b + 3c = 11
chứng minh rằng: \(\dfrac{2b+3c+16}{6a+1}+\dfrac{6a+3c+16}{2b+1}+\dfrac{6a+2b+16}{3c+1}\) >/ 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BDT\Leftrightarrow\frac{6a+2b+3c+17}{1+6a}+\frac{6a+2b+3c+17}{1+2b}+\frac{6a+2b+3c+17}{1+3c}\ge18\)
\(\Leftrightarrow\left(6a+2b+3c+17\right)\left(\frac{1}{1+6a}+\frac{1}{1+2b}+\frac{1}{1+3c}\right)\ge18\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{1}{1+6a}+\frac{1}{1+2b}+\frac{1}{1+3c}\ge\frac{9}{6a+2b+3c+3}\)
\(\Rightarrow VT=\left(6a+2b+3c+17\right)\left(\frac{1}{1+6a}+\frac{1}{1+2b}+\frac{1}{1+3c}\right)\)
\(\ge\left(6a+2b+3c+17\right)\cdot\frac{9}{6a+2b+3c+3}\)
\(=\left(11+17\right)\cdot\frac{9}{11+3}=18=VP\)
đặt 6a=x;2b=y;3c=z=>x+y+z=11
áp dụng bất đẳng thức Schwarts ta có:\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+y+z+3}=\frac{9}{14}\)
\(\Leftrightarrow\frac{28}{x+1}+\frac{28}{y+1}+\frac{28}{z+1}\ge\frac{28.9}{14}=18\)
\(\Leftrightarrow\frac{28}{x+1}-1+\frac{28}{y+1}-1+\frac{28}{z+1}-1\ge18-1-1-1=15\)
\(\Leftrightarrow\frac{27-x}{x+1}+\frac{27-y}{y+1}+\frac{27-z}{z+1}\ge15\)
\(\Leftrightarrow\frac{11-x+16}{x+1}+\frac{11-y+16}{y+1}+\frac{11-z+16}{z+1}\ge15\)
\(\Leftrightarrow\frac{y+z+16}{x+1}+\frac{z+x+16}{y+1}+\frac{x+y+16}{z+1}\ge15\)
\(\Leftrightarrow\frac{2b+3c+16}{6a+1}+\frac{6a+3c+16}{2b+1}+\frac{6a+2b+16}{3c+1}\ge15\)
=>đpcm
dấu "=" xảy ra khi \(a=\frac{11}{18};b=\frac{11}{6};c=\frac{11}{9}\)
Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)
Ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)
Tương tự:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)
Cộng vế:
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)
\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{b+c}\ge\dfrac{16}{2a+3b+3c}\)
\(\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{a+c}\ge\dfrac{16}{2b+3a+3c}\)
\(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{a+b}\ge\dfrac{16}{2c+3a+3b}\)
cộng tất cả lại ta được \(4.2017\ge16.\left(\dfrac{1}{2a+3b+3c}+\dfrac{1}{2b+3a+3c}+\dfrac{1}{2c+3a+3b}\right)< =>P\le\dfrac{2017}{4}\)
dấu bằng xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{a+b}=\dfrac{1}{b+c}=\dfrac{1}{a+c}\\\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=2017\end{matrix}\right.< =>\left\{{}\begin{matrix}a=b=c\\\dfrac{3}{2a}=\dfrac{3}{2b}=\dfrac{3}{2c}=2017\end{matrix}\right.< =>a=b=c=\dfrac{3}{4034}}\)