K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

a+b+c= 0 <=> (a+b+c)^2 = 0

<=> a^2+b^2 + c^2 + 2(ab+ac+bc) = 0

có : \(a^2\ge0;b^2\ge0;c^2\ge0\)

=> 2 (ab+ac+bc) ≤ 0

<=> ab+ac+bc ≤ 0

20 tháng 4 2018

dấu "=" xảy ra khi và chỉ khi a = b =c

NV
6 tháng 5 2021

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow ab+bc+ca=-\dfrac{a^2+b^2+c^2}{2}\)

Mà \(-\dfrac{a^2+b^2+c^2}{2}\le0\Rightarrow ab+bc+ca\le0\)  ;\(\forall a;b;c\) (đpcm)

NV
14 tháng 1 2021

\(Q=\dfrac{2-\dfrac{c}{a}-\dfrac{2b}{a}+\left(\dfrac{b}{a}\right)\left(\dfrac{c}{a}\right)}{1-\dfrac{b}{a}+\dfrac{c}{a}}=\dfrac{2-mn+2\left(m+n\right)-mn\left(m+n\right)}{1+m+n+mn}\)

\(Q=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{\left(m+1\right)\left(n+1\right)}\ge\dfrac{\left[8-\left(m+n\right)^2\right]\left(m+n+1\right)}{\left(m+n+2\right)^2}\)

Đặt \(m+n=t\Rightarrow0\le t\le2\)

\(Q\ge\dfrac{\left(8-t^2\right)\left(t+1\right)}{\left(t+2\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{\left(2-t\right)\left(4t^2+15t+10\right)}{4\left(t+2\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(t=2\) hay \(m=n=1\)

24 tháng 11 2021

Thầy ơi sao bên này là (2-mn) qua bên kia lại là \(\left[8-\left(m+n\right)^2\right]\) , dưới mẫu là (m+1)(n+1) qua bên này là \(\text{(m+n+2)}^2\)

 

Đặt \(\dfrac{ab+ac}{4}=\dfrac{bc+ab}{6}=\dfrac{ca+cb}{8}=k\)

=>ab+ac=4k; bc+ab=6k; ac+bc=8k

=>ac-bc=-2k; ac+bc=8k; ab+ac=4k

=>ac=3k; bc=5k; ab=k

=>c/b=3; c/a=5

=>c=3b=5a

=>a/3=b/5=c/15

14 tháng 9 2017

Giải:

Biến đổi vế trái, ta được:

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

\(=\left(ab-a-b+1\right)\left(c-1\right)\)

\(=abc-ab-ac+a-bc+b+c-1\)

\(=abc-ab-ac-bc+a+b+c-1\)

\(=abc-\left(ab+ac+bc\right)+\left(a+b+c\right)-1\)

Thay ab + ac + bc = abc và a + b + c = 1, ta được:

\(=abc-abc+1-1\)

\(=0\)

\(\Rightarrowđpcm\).

Chúc bạn học tốt!

28 tháng 4 2017

a+b+c=0

<=>(a+b+c)^2=0

<=>a^2+b^2+c^2+2(ab+bc+ca)=0

Mà a^2+b^2+c^2>=0 với mọi a,b,c

=>ab+bc+ca<=0 với mọi a,b,c.

Dấu "="xảy ra<=>a=b=c=0.

16 tháng 4 2019

Từ a+b+c=0 =>c=-a-b.thay vào có: 
ab+bc+ca= ab-(a+b)^2= -(a^2+ab+b^2)= -1/2[(a+b)^2+a^2+b^2)] 
vì (a+b)^2>=0, a^2>=0,b^2>=0 nên biểu thức này luôn luôn =<0. Dấu = xảy ra khi a=b=c=0.