CMR: Trong một tam giác cân, đường trung tuyến xuất phát từ đỉnh vừa là đường phân giác của góc ở đỉnh và ngược lại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử ∆ABC có AD là phân giác và DB = DC, ta chứng minh ∆ABC cân tại A
Kéo dài AD một đoạn DA1 = AD
Ta có: ∆ADC = ∆A1DC (c.g.c)
Nên
mà (gt)
=>
=> ∆ACA1 cân tại C
Ta lại có: AB = A1C ( ∆ADB = ∆A1DC)
AC = A1C ( ∆ACA1 cân tại C)
=> AB = AC
Vậy ∆ABC cân tại A
Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân
đường phân giác của góc ở đỉnh vừa là đường trung tuyến xuất phát từ đỉnh
Để mik giúp bạn nha Ngọc Hàn Băng Nhi!
GT : ∆ABC
Hai phân giác BE, CF cắt nhau tại I
AI là tia phân giác của góc A
KL: IH = IK = IL
- Vì I nằm trên tia phân giác BE của góc B nên IL = IH (1) (theo định lí 1 về tính chất của tia phân giác).- Tương tự, ta có IK = IH (2).
- Từ (1) và (2) suy ra IK = IL (= IH), hay I cách đều hai cạnh AB, AC của góc A. Do đó I nằm trên tia phân giác của góc A (theo định lí 2 về tính chất của tia phân giác), hay AI là đường phân giác xuất phát từ đỉnh A của tam giác ABC.
Tóm lại, ba đường phân giác của tam giác ABC cùng đi qua điểm I và điểm này cách đều ba cạnh của tam giác, nghĩa là : IH = IK = IL.
Đây là chỉ là hướng dẫn thui( Do gõ nhìu mỏi tay wá!) Có gì bạn tự triểm khai ra nhé! Chúc bạn học tốt!
Vì tam giác ABC cân tại A nên góc ABC= góc ACB(theo tính chất của tam giác cân)
Xét tam giác ABD và tam giác ACD ta có:
góc BAD=góc CAD(gt); AB=AC(gt); góc ABD=góc ACD(cmt)
Do đó tam giác ABD= tam giác ACD(g.c.g)
=> BD=CD=> AD là trung tuyến của cạnh BC của tam giác ABC(đpcm)
Chúc bạn học tốt!!!
Xét tam giác ABC cân tại A, đường phân giác AH.
Xét tam giác BAH và tam giác CAH có:
AB=AC (do tam giác ABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}=\frac{\widehat{A}}{2}\)
AH chung
=> \(\Delta BAH=\Delta CAH\left(c.g.c\right)\)
=> \(\widehat{AHB}=\widehat{AHC}\)
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)(kề bù)
=>\(\widehat{AHB}=\widehat{AHC}=\frac{180^o}{2}=90^o\)
=>AH L BC
Ngược lại c/m tương tự
bạn tham khảo link này nha:https://hoc24.vn/hoi-dap/tim-kiem?id=137279&q=Ch%E1%BB%A9ng%20minh%20%3A%20trong%20m%E1%BB%99t%20tam%20gi%C3%A1c%20c%C3%A2n%2C%20%C4%91%C6%B0%E1%BB%9Dng%20ph%C3%A2n%20gi%C3%A1c%20xu%E1%BA%A5t%20ph%C3%A1t%20t%E1%BB%AB%20%C4%91%E1%BB%89nh%20%C4%91%E1%BB%93ng%20th%E1%BB%9Di%20l%C3%A0%20%C4%91%C6%B0%E1%BB%9Dng%20trung%20tuy%E1%BA%BFn%20%E1%BB%A9ng%20v%E1%BB%9Bi%20c%E1%BA%A1nh%20%C4%91%C3%A1y.
Giả sử \(\Delta ABC\)cân tại A có AM là trung tuyến .
Xét \(\Delta AMB\)và \(\Delta AMC\)có :
AB = AC ( gt )
AM ( cạnh chung )
BM = CM ( gt )
Suy ra : \(\Delta AMB\)= \(\Delta AMC\)( c.c.c )
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)
Từ đó suy ra ; AM là tia phân giác của \(\Delta ABC\)
Từ A kẻ đường thẳng m vuông góc với BC tại trung điểm D của BC.
\( \Rightarrow \) AD là đường trung tuyến của BC.
Xét \(\Delta ABD\) và \(\Delta ACD\) có:
\(\begin{array}{l}\widehat {ADB} = \widehat {ADC} = {90^0}\\AD:chung\\BD = CD\left( {gt} \right)\\ \Rightarrow \Delta ABD = \Delta ACD\left( {c - g - c} \right)\end{array}\)
\( \Rightarrow AB = AC\)(2 cạnh tương ứng)
\( \Rightarrow \Delta ABC\)cân tại A (đpcm).
vì ΔABC cân tại A
=>AB=AC
\(\widehat{B}=\widehat{C}\)
Xét Δ ABH va Δ ACH
AB=AC (cmt)
\(\widehat{B}=\widehat{C}\)(cmt)
HB=HC (vì AH là trung tuyến của Δ ABC)
=> Δ ABH =Δ ACH (c-g-c)
=> \(\widehat{A_1}=\widehat{A_2}\)(2 cạnh tương ứng)
=> AH là phân giác của góc A (đpcm)