K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

Ôn tập Đường tròn

a) Do SA là tiếp tuyến tại A của đường tròn (O) nên \(\widehat{SAO}=90^o\)

Do I là trung điểm của dây cung BC nên theo tính chất đường kính dây cung ta có \(OI\perp BC\Rightarrow\widehat{SIO}=90^o\)

Xét tứ giác SAOI có \(\widehat{SAO}+\widehat{SIO}=180^o\) mà A và I là hai đỉnh đối nhau nên SAOI là tứ giác nội tiếp đường tròn đường kính SO.

Xét tam giác cân OBC có OI là đường trung tuyến nên đồng thời là đường phân giác. Suy ra \(\widehat{BOD}=\widehat{COD}\Rightarrow sđ\stackrel\frown{BD}=sđ\stackrel\frown{DC}\)

Xét đường tròn (O) có \(sđ\stackrel\frown{BD}=sđ\stackrel\frown{DC}\Rightarrow\widehat{BAD}=\widehat{DAC}\) (Hai góc nội tiếp chắn các cung có số đo bằng nhau)

Suy ra AD là phân giác góc BAC.

b) Xét đường tròn (O) có:

\(\widehat{SEA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{DC}\right)\) (Góc có đỉnh nằm trong đường tròn)

\(=\dfrac{1}{2}\left(sđ\stackrel\frown{AB}+sđ\stackrel\frown{BD}\right)=\dfrac{1}{2}sđ\stackrel\frown{AD}\)

Lại có \(\widehat{SAE}=\dfrac{1}{2}sđ\stackrel\frown{AD}\) (Góc tạo bởi tiếp tuyến dây cung)

\(\Rightarrow\widehat{SEA}=\widehat{SAE}\) hay tam giác SAE cân tại S.

Suy ra SA = SE (1)

Xét tam giác SBA và tam giác SAC có:

Góc S chung

\(\widehat{SAB}=\widehat{SCA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn cung AB)

\(\Rightarrow\Delta SBA\sim\Delta SAC\left(g-g\right)\)

\(\Rightarrow\dfrac{SB}{SA}=\dfrac{SA}{SC}\Rightarrow SA^2=SB.SC\) (2)

Từ (1) và (2) suy ra \(SE^2=SB.SC\)

c) Xét tam giác SAM và tam giác SFA có:

Góc S chung

\(\widehat{SAM}=\widehat{SFA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn cung AM)

\(\Rightarrow\Delta SAM\sim\Delta SFA\left(g-g\right)\)

\(\Rightarrow\dfrac{SA}{SF}=\dfrac{SM}{SA}\Rightarrow SA^2=SM.SF\)

\(\Rightarrow SM.SF=SE^2\Rightarrow\dfrac{SM}{SE}=\dfrac{SE}{SF}\)

Xét tam giác SME và tam giác SEF có:

Góc S chung

\(\dfrac{SM}{SE}=\dfrac{SE}{SF}\)

\(\Rightarrow\Delta SME\sim\Delta SEF\left(c-g-c\right)\)

\(\Rightarrow\widehat{MES}=\widehat{EFM}=\dfrac{1}{2}sđ\stackrel\frown{ME}\)

Suy ra SE là tiếp tuyến của đường tròn ngoại tiếp tam giác EFM.

d) Câu d có lẽ em gõ nhầm một chút: Kẻ AH vuông góc SO tại H.

Em xem lại đề rồi báo lại cô nhé. Nếu sửa đề như cô nói thì ta sẽ chứng minh FN vuông góc SD.

Sau đó xét tam giác SFD có SI và FN là các đường cao nên N là trực tâm của tam giác

Vậy thì N thuộc đường cao DM hay M, N, D thẳng hàng.

4 tháng 5 2018

Ôi cái hình =))))

18 tháng 3 2021

J đây b

19 tháng 12 2021

Chưa viết hết đầu bài kìa

17 tháng 2 2023

Đề lỗi

17 tháng 2 2023

cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek

17 tháng 2 2023

Đề lỗi

17 tháng 2 2023

 đề đây nha mn :((   cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E

23 tháng 8

=> Đề của bạn chưa đầy đủ và rõ ràng, bạn xem lại nhé!

14 tháng 3 2023

Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME 
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP 
c cmr CE = CD tam giác AMD là tam giác j vì s 
D  CMR AM NHỎ HƠN AB +AC /2
​CHỈ LM MỖI Ý D THUI NHA NHANH NHA

a: Xét ΔAMB và ΔEMC có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xet ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại B

=>BD=BA=CE

c: Xet ΔMAD có

MH vừa là đường cao,vừa là trung tuyến

=>ΔMAD cân tại M

d: AM<1/2(AB+AC)

=>AE<AB+AC

=>AE<BE+AB(luôn đúng)

23 tháng 4 2022

thiếu

15 tháng 3 2021

Sao tôi viết câu hỏi nhưng chỉ hiển thị có 1 dòng

15 tháng 3 2021

Xem ảnh nguồn

22 tháng 12 2021

thiếu kìa