K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

\(S=\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+........+\dfrac{99}{1.2.......100}\)

\(=\dfrac{1}{2!}+\dfrac{2}{3!}+....+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+.......+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+....+\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

\(\Leftrightarrow S< 1\left(đpcm\right)\)

25 tháng 6 2021

a)

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}\)

 

P/s: Cj chỉ biết làm ý a thôi nhé! Có j ko hiểu cmt nhé!

25 tháng 6 2021

mình cần câu b lắm ,mà cũng cảm ơn bạn nha

 

21 tháng 6 2016

bạn làm theo công thức \(\frac{n}{n.\left(n+1\right)}=\frac{n}{n}-\frac{n}{n+1}\)

21 tháng 6 2016

a)Đặt A= \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Rightarrow2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\)

\(\Rightarrow2A=1-\frac{1}{2n+1}< 1\)

\(\Rightarrow A< \frac{1}{2}\)(đpcm)

b)Ta có: \(1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1+1-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\)

\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}< 2\)

\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 2\)(đpcm)

AH
Akai Haruma
Giáo viên
19 tháng 10 2018

Lời giải:

\(A=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{2011}{1.2.3...2012}\)

\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{2012-1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...2011}-\frac{1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2...2012}< 1\)

Ta có đpcm.

10 tháng 5 2017

hôm qua cô giảng cho mình bài này không cần tính đâu

Gọi tổng là A

A=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{17.18.19}\)

2A=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{17.18.19}\)

2A=\(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{17.18}-\dfrac{1}{18.19}\)

2A=\(\dfrac{1}{2}-\dfrac{1}{18.19}\)

A=\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{18.19}\right)\)

A=\(\dfrac{1}{2}.\dfrac{18.19-2}{2.18.19}\) < \(\dfrac{1}{4}\)

A=\(\dfrac{18.19-2}{2.2.18.19}\) < \(\dfrac{18.19}{2.2.18.19}\)

\(\Rightarrow\) A<\(\dfrac{1}{4}\)

9 tháng 5 2017

\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{17.18.19}\)<\(\dfrac{1}{4}\)

Đặt A=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{17.18.19}\)

2.A=2.(\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{17.18.19}\))

2. A=\(\dfrac{2}{1.2.3}\)+\(\dfrac{2}{2.3.4}\)+\(\dfrac{2}{3.4.5}\)+...+\(\dfrac{2}{17.18.19}\)

2.A=\(\dfrac{1}{1.2}\)-\(\dfrac{1}{2.3}\)+\(\dfrac{1}{2.3}\)-\(\dfrac{1}{3.4}\)+ ...+\(\dfrac{1}{17.18}\)-\(\dfrac{1}{18.19}\)

2.A=\(\dfrac{1}{1.2}\)-\(\dfrac{1}{18.19}\)=\(\dfrac{85}{171}\)

A=\(\dfrac{85}{171}\):2=\(\dfrac{85}{342}\)

Ta cũng có: \(\dfrac{1}{4}\) = \(\dfrac{171}{684}\); \(\dfrac{85}{342}\) = \(\dfrac{170}{684}\)

Vì 170 < 171 ( \(\dfrac{170}{684}\) < \(\dfrac{171}{684}\) )

Vậy \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{17.18.19}\) < \(\dfrac{1}{4}\)