Cho a,b ,c là các số thực dương.CMR
(a+3c)/(a+b)-(a+3b)/(a+c)+2a/(b+c)≥5. Đẳng thức xảy ra khi nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\)
\(=\frac{a+c}{a+b}+\frac{2c}{a+b}+\frac{a+b}{a+c}+\frac{2b}{a+c}+\frac{2a}{b+c}\)
\(=2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)\)
Áp dụng BĐT Cauchy - Schwar:
\(\frac{a+c}{a+b}+\frac{a+b}{a+c}\ge2\sqrt{\frac{\left(a+c\right)\left(a+b\right)}{\left(a+b\right)\left(a+c\right)}}=2\)(1)
Áp dụng BĐT Nesbit:
\(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\ge\frac{3}{2}\)
\(\Leftrightarrow2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)\ge3\)(2)
Từ (1) và (2) suy ra \(2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)\ge5\)
hay \(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\ge\left(đpcm\right)\)
Ta có: \(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}-5\ge0\)
\(\Leftrightarrow\frac{a+3c}{a+b}-2+\frac{a+3b}{a+c}-2+\frac{2a}{b+c}-1\ge0\)
Giải bất phương trình
Cuối cùng ta được: \(\left(c-a\right)^2\left(\frac{1}{\left(a+b\right)\left(b+c\right)}\right)+2\left(b-c\right)^2\left(\frac{1}{\left(a+c\right)\left(a+b\right)}\right)+\left(a-b\right)^2\) \(\left(\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\ge0\)
BĐT đúng <=> a = b = c
\(BDT\Leftrightarrow\frac{a+3c}{a+b}-2+\frac{a+3b}{a+c}-2+\frac{2a}{b+c}-1\ge0\)
\(\Leftrightarrow\frac{c-a}{a+b}+\frac{2\left(c-b\right)}{a+b}+\frac{b-a}{a+c}+\frac{2\left(b-c\right)}{a+c}+\frac{a-b}{b+c}+\frac{a-c}{b+c}\ge0\)
\(\Leftrightarrow\left(c-a\right)^2\frac{1}{\left(a+b\right)\left(b+c\right)}+2\left(b-c\right)^2\frac{1}{\left(a+c\right)\left(a+b\right)}+\left(a-b\right)^2\frac{1}{\left(a+c\right)\left(b+c\right)}\ge0\)
BĐT cuối đúng nên ta có ĐPCM
Xảy ra khi \(a=b=c\)
Tại t nháp luôn vào chỗ để gửi trả lời nên khi gửi ko nhìn lại nó hơi tắt. Hết dòng thứ 2, bắt đầu dòng thứ 3:
\(\Leftrightarrow\left(\frac{c-a}{a+b}+\frac{a-c}{b+c}\right)+\left(\frac{2\left(b-c\right)}{a+c}+\frac{2\left(c-b\right)}{a+b}\right)+\left(\frac{a-b}{b+c}+\frac{b-a}{a+c}\right)\ge0\)
\(\Leftrightarrow\left(c-a\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+2\left(b-c\right)\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+\left(a-b\right)\left(\frac{1}{b+c}-\frac{1}{a+c}\right)\ge0\)
\(\Leftrightarrow....\) the last ineq in here !
Mk nghĩ chỗ kia là cộng :3
\(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\)
\(=\frac{a+c+2c}{a+b}+\frac{a+b+2b}{a+c}+\frac{2a}{b+c}\)
\(=\frac{a+c}{a+b}+\frac{2c}{a+b}+\frac{a+b}{a+c}+\frac{2b}{a+c}+\frac{2a}{b+c}\)
\(=2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)\)
Áp dụng bđt Cauchy: \(\frac{a+c}{a+b}+\frac{a+b}{a+c}\ge2\sqrt{\frac{\left(a+c\right)\left(a+b\right)}{\left(a+b\right)\left(a+c\right)}}=2\)
Áp dụng bđt Nesbit: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\Leftrightarrow2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\ge3\)
Cộng theo vế suy ra đpcm. "=" khi a=b=c
Áp dụng bất đẳng thức Cauchy-Schwarz ta có :
\(VT\ge\frac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\frac{a+b+c}{4}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow a=b=c\)
Ta có:
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\)\(\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Tương tự ta có: \(\frac{bc}{b+3c+2a}\le\frac{bc}{9}\left(\frac{1}{b+a}+\frac{1}{c+a}+\frac{1}{2c}\right)\)
và \(\frac{ca}{c+3a+2b}\le\frac{ca}{9}\left(\frac{1}{c+b}+\frac{1}{a+b}+\frac{1}{2a}\right)\)
Cộng theo vế ta có:\(VT\le\frac{1}{9}\left(\frac{bc+ac}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ac}{b+c}\right)+\frac{1}{18}\left(a+b+c\right)\)
\(\le\frac{1}{9}\left(a+b+c\right)+\frac{1}{18}\left(a+b+c\right)=\frac{a+b+c}{6}\)
Dấu "=" xảy ra khi a=b=c
Với [x>1x<−1] ta có: x^3< x^3+2x^2+3x+2<(x+1)^3⇒x^3<y^3<(x+1)^3 (không xảy ra)
Từ đây suy ra −1≤ x ≤1
Mà x∈Z⇒x∈{−1;0;1}
∙∙ Với x=−1⇒y=0
∙∙ Với x=0⇒y= căn bậc 3 của 2 (không thỏa mãn)
∙∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2)
\(VP=\frac{1}{2}\Sigma\sqrt{4\left(a^2b+a^2c\right)}\le\frac{1}{4}\Sigma\left(4+a^2b+a^2c\right)\)
\(=3+\frac{1}{4}\Sigma ab\left(a+b\right)\le3+\frac{1}{2}\left(a^3+b^3+c^3\right)\)
\(=\frac{1}{2}\left(a^3+b^3+c^3+3abc\right)\le a^3+b^3+c^3\)
Đẳng thức xảy ra khi \(a=b=c\)