Tìm cặp số (x;y) biết:
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
Giải từng bước hộ mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
IxI >=0 với mọi x thuộc Z
IyI >=0 với mọi x thuộc Z
=> IxI+IyI >=0 với ọi x,y thuộc Z
Mà -5<0 => Không tồn tại giá trị x,y thỏa mãn đề bài
Lời giải:
$xy=x-y$
$\Rightarrow xy-x+y=0$
$\Rightarrow x(y-1)+(y-1)=-1$
$\Rightarrow (x+1)(y-1)=-1$
Với $x,y$ nguyên thì $x+1, y-1$ nguyên. Mà tích của chúng bằng -1 nên ta xét các TH sau:
TH1: $x+1=1, y-1=-1\Rightarrow x=0; y=0$
TH2: $x+1=-1, y-1=1\Rightarrow x=-2; y=2$
x . ( y - 2 ) = 7
Có 2 TH:
TH1:
x = 1
y - 2 = 7
y = 7 + 2
y = 9
TH2:
x = 7
y - 2 = 1
y = 1 + 2
y = 3
Từ 2 trường hợp trên vậy x = 1 hoặc bằng 7
y = 9 hoặc bằng 3
Cure Beat:
Có 2 trường hợp như bạn Đỗ Đức Đạt vừa nêu
=> x = 1 hoặc 7
y = 9 hoặc 3
( x - 1 ) , y = 7
Có 2 TH:
TH1
x - 1 = 7
x = 7 + 1
x = 8
y = 1
TH2:
x - 1 = 1
x = 1 + 1
x = 2
y = 7
Tự kết luận nhé
\(x+3y=xy+3\)
\(\Leftrightarrow x+3y-xy-3=0\)
\(\Leftrightarrow x-xy+3y-3=0\)
\(\Leftrightarrow x\left(1-y\right)-3\left(1-y\right)=0\)
\(\Leftrightarrow\left(1-y\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-y=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1\\x=3\end{matrix}\right.\)
Vậy phương trình trên bằng nhau xảy ra khi
\(x=3\) và \(y=1\)
=> x-1 là ước của 5
=> x-1 = 1;-1;5;-5
*Nếu x-1=1
=> x=1+1=2 (1)
xy+2=5 => xy=3 (2)
Từ (1)và (2) => y=3:2 ( loại vì y nguyên )
Tự xét tiếp các trường hợp khác, đi
Ta có: 5 = -1 . -5
5 = -5 . -1
5 = 1 . 5
5 = 5 . 1
Vậy ta có bảng sau:
x - 1 | -1 | -5 | 1 | 5 |
xy + 2 | -5 | -1 | 5 | 1 |
x | 0 | -4 | 2 | 6 |
y | ( vô nghiệm ) | ( thuộc Q ) | ( thuộc Q ) | ( thuộc Q ) |
Vậy là không có số nào thuộc Z hay phương trình vô nghiệm.
Ta có:
3=1.3=(-1).(-3)=3.1=(-3).(-1)
Ta có bảng sau:
x+1 | 1 | -1 | 3 | -3 |
y+2 | 3 | -3 | 1 | -1 |
x | 0 | -2 | 2 | -4 |
y | 1 | -5 | -1 | -3 |
Vậy ta có các cặp (x;y) thỏa mãn là: (x;y)=(0;1);(-2;-5);(2;-1);(-4;-3)
-------- ( mk k chép lại đề nhé )
=> \(\dfrac{4+20y}{20x}=\dfrac{5+35y}{20x}\)
Với x khác 0 :
=> 4+20y=5+35y
4-5=35y-20y
-1=15y
y=\(\dfrac{-1}{15}\)
Thay y=\(\dfrac{-1}{15}\) vào \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}\) ta đc :
1+3 . \(\dfrac{-1}{15}\) : 1+5 . \(\dfrac{-1}{15}\) = 12 : 5x
\(\dfrac{4}{5}:\dfrac{2}{3}=12:5x\)
\(\dfrac{6}{5}=12:5x\)
5x=12:\(\dfrac{6}{5}\)
5x=10 => x=2
Vậy x=2 ; y =\(\dfrac{-1}{15}\)