CMR nếu ab +cd chia hết cho 11 thì abcd chia hết cho11 {ab;cd;abcd có gạch trên đầu}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
abcd=100.ab+cd=99.ab+ab+cd=99.ab+(ab+cd)
mà 99.ab=11.9.ab chia hết cho 11
ab+cd chia hết cho 11(theo đề)
=>99.ab+(ab+cd) chia hết cho 11
=>abcd chia hết cho 11(đpcm)
Ta có ab + cd chia hết cho 11 nên ab + cd = 11k (k \(\in\) N*)
Do đó abcd = ab . 100 + cd = ab . 99 + ab + cd = ab . 9 . 11 + 11k = 11.(ab . 9 + k) chia hết cho 11
Ta có: abcd = 100ab + cd = 99ab + ab + cd
Vì 99 chia hết cho 11 => 99ab chia hết cho 11 mà ab + cd chia hết cho 11 => 99ab + ab + cd chia hết cho 11 hay abcd chia hết cho 11 (đpcm)
Ta có:
abcd = ab.100 +cd = ab.99 +ab +cd = ab.9.11 + ab +cd
Vì ab.9.11 chia hết cho 11 nên để abcd chia hết cho 11 thì ab + cd phải chia hết cho 11
Vậy nếu ab+ cd chia hết cho 11 thì abcd chia hết cho 11
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11
suy ra: (b+d+g) - (a+c+e) chia hết cho 11
suy ra : /abcdeg chia hết cho 11
Ta có : abcdeg=10000ab + 100cd + eg
= 9999ab + ab + 99cd+ cd + eg
= 9999ab+99cd+(ab+cd+eg)
Vì 9999ab+99cd chia hết cho 11 và đầu bài cho ab+cd+eg chia hết cho 11
=>abcdeg chie hết cho 11
Ta có
abcd = ab.100 + cd
= ab.99 + ab + cd
= ab.99 + (ab + cd)
Do ab.99= ab.9.11 chia hết cho 11 và theo bài ra ta có ab + cd chia hết cho 11
nên ab.99 + (ab + cd) chia hết cho 11
Vậy abcd chia hết cho 11