K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Vì M nằm trên d1 nên M(x;-x-2)

Theo đề, ta có: \(\dfrac{\left|x\cdot1-3\cdot\left(-x-2\right)+1\right|}{\sqrt{1^2+\left(-3\right)^2}}=3\)

\(\Leftrightarrow\left|x+3x+6+1\right|=3\sqrt{10}\)

\(\Leftrightarrow\left|4x+7\right|=3\sqrt{10}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt{10}-7}{4}\\x=\dfrac{-3\sqrt{10}-7}{4}\end{matrix}\right.\)

20 tháng 4 2018

Với m = 2 thì d 1 : y = 2x + 3; d 2 : y = x + 1

Tập xác định của hàm số R

Bảng giá trị

x 0 - 1
y = 2x + 3 3 1
x 0 - 1
y = x + 1 1 0

Đề kiểm tra Toán 9 | Đề thi Toán 9

Gọi A ( x 0 ; y 0 ) là tọa độ giao điểm của d1 và d2

Khi đó:

( y 0  = 2 x 0  + 3 và  y 0  =  x 0  + 1

⇒ 2xo + 3 = x 0  + 1 ⇔  x 0  = -2

⇒  y 0  =  x 0  + 1 = -2 + 1 = -1

 

Vậy tọa độ giao điểm của d 1  và d 2 là (-2; -1)

M thuộc (d1) nên M(1-2t;1+t)

Theo đề, ta có: d(M;d2)=d(M;d3)

=>\(\dfrac{\left|\left(1-2t\right)\cdot3+\left(1+t\right)\cdot4-4\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|\left(1-2t\right)\cdot4+\left(1+t\right)\cdot\left(-3\right)+2\right|}{\sqrt{4^2+\left(-3\right)^2}}\)

=>|-6t+3+4t+4-4|=|4-8t-3t-3+2|

=>|-2t+3|=|-11t+3|

=>-2t+3=-11t+3 hoặc -2t+3=11t-3

=>t=0 hoặc t=6/13

=>M(1;1); M(1/13; 19/13)

Bài 3: 

Vì (d)//(d1) nên a=3 

Vậy: (d): y=3x+b

Thay \(x=\dfrac{2}{3}\) và y=0 vào (d), ta được:

\(b+2=0\)

hay b=-2

8 tháng 9 2021

cần b2 thôi

 

11 tháng 12 2021

1: Để hai đường thẳng cắt nhau thì 

2m+1<>m+2

hay m<>1

23 tháng 10 2021

b: Phương trình hoành độ giao điểm là:

x+1=-x+3

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)

hay y=2

10 tháng 3 2022

 \(d_1:mx+y=3m-1.\\ \Leftrightarrow-mx+3m-1=y.\)

\(d_2:x+my=m+1.\\ \Leftrightarrow my=-x+m+1.\\\Leftrightarrow y=\dfrac{-x}{m}+\dfrac{m}{m}+\dfrac{1}{m}.\Leftrightarrow y=-\dfrac{1}{m}x+1+\dfrac{1}{m}.\)

Thay m = 2 vào phương trình đường thẳng d1 ta có:

\(-2x+3.2-1=y.\\ \Leftrightarrow-2x+5=y.\)

Thay m = 2 vào phương trình đường thẳng d2 ta có:

\(y=-\dfrac{1}{2}x+1+\dfrac{1}{2}.\\ \Leftrightarrow y=\dfrac{-1}{2}x+\dfrac{3}{2}.\)

Xét phương trình hoành độ giao điểm của d1 và d2 ta có:

\(-2x+5=\dfrac{-1}{2}x+\dfrac{3}{2}.\\ \Leftrightarrow\dfrac{-3}{2}x=-\dfrac{7}{2}.\\ \Leftrightarrow x=\dfrac{7}{3}.\)

\(\Rightarrow y=\dfrac{1}{3}.\)

Tọa độ giao điểm của d1 và d2 khi m = 2 là \(\left(\dfrac{7}{3};\dfrac{1}{3}\right).\)