giải cho mình nhé:
bài 1: cho 3 số tự nhiên a; b; c trong đó a là số nhỏ nhất. Biết rằng trên tia số, điểm b nằm giữa hai điểm a và c. Hãy dùng kí hiệu"<" để mô tả thứ tự của 3 số a; b và c. Cho ví dụ bằng số cụ thể
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a chia 12 dư 2 nên a = 12k + 2
b chia 9 dư 1 nên b = 9t + 1
Ta có: a + b = 12k + 2 + 9t + 1 = 12k + 9t + 3 chia hết cho 3
a)Gọi 3 số tự nhiên liên tiếp là:a;a+1;a+2
Tổng 3 số tự nhiên liên tiếp là:S=a+a+1+a+2=3a+3
Vì 3 chia hết cho 3 nên 3a chia hết cho 3=>3a chia hết cho 3
hay S chia hết cho 3
Vậy _________________________
Bạn tự kết luận nhé!
Câu b tương tự chỉ là nó không chia hết cho 4 thôi!
a)Ta gọi 3 số tự nhiên liên tiếp là:a,a+1,a+2(a thuộc N)
Ta có:a+(a+1)+(a+2)=3a+3 chia hết cho 3 vì 3a chia hết cho 3,3 chia hết cho a
Suy ra tổng 3 số tự nhiên liên tiếp chia hết cho 3.
b)Tương tự như câu a
a) Gọi 2 số tự nhiên liên tiếp là n, n + 1 ( n thuộc N)
Nếu n chia hết cho 2 thì ta có điều cần chứng tỏ.
Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2.
b) Gọi 3 số tự nhiên liên tiếp là n, n + 1, n + 2 (n thuộc N)
Ta có:
n + (n + 1) + (n + 2) = 3n + 3 chia hết cho 3 (vì 3n và 3 đều chia hết cho 3 nên tổng của chúng chia hết cho 3)
a) Trong 2 số tự nhiên liên tiếp chắc rằng sẽ có 1 số chẵn và 1 số lẻ Suy ra : số chẵn sẽ chia hết cho 2
mk chỉ suy luận được câu a thôi
a. để A là số nguyên thì 3 chia hết cho n-1 suy ra n-1 thuộc ước của 3
Ư(3)= (+_ 1: +_3)
lập bảng ta tính được x=( 0;2;4)
a)Để A là số nguyên thì 3 chia hết cho n-1
Hay \(\left(n-1\right)\inƯ\left(3\right)\)
Vậy Ư (3) là:[1,-1,3,-3]
Do đó ta có bảng sau:
n-1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Vì n là số tự nhiên nên Để A là số nguyên thì n=0;2;4
b)
Để A là số nguyên tố thì 3 chia hết cho n-1
Hay \(\left(n-1\right)\inƯ\left(3\right)\)
Vậy Ư (3) là:[1,-1,3,-3]
Do đó ta có bảng sau:
n-1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Vì n là số tự nhiên nên Để A là số nguyên tố thì n=2 là TM
Bài 1: 5a+7b chia hết cho 13
=> 35a+49b chia hết cho 13
=> 5(7a+2b)+39b chia hết cho 13
Do 39b chia hết cho 13
=> 5(7a+2b) chia hết cho 13
Mà 5 vs 13 là 2 số nguyên tố cùng nhau
=> 7a+2b chia hết cho 13. (đpcm)
Bài 2:
Xét n=3 thì 1!+2!+3!=9-là SCP (chọn)
Xét n=4 thì 1!+2!+3!+4!=33 ko là SCP (loại)
Nếu n>=5 thì n! sẽ có tận cùng là 0
=> 1!+2!+3!+4!+....+n! vs n>=5 thì sẽ có tận cùng là 3 do 1!+2!+3!+4! tận cùng =3
Mà 1 số chính phương ko thể chia 5 dư 3 (1 SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0;1;4- tính chất)
=> Với mọi n>=5 đều loại
vậy n=3.
Bài 3:
Do 26^3 có 2 chữ số tận cùng là 76
26^5 có 2 chữ số tận cùng là 76
26^7 có 2 chữ sốtận cùng là 76
Vậy ta suy ra là 26 mũ lẻ sẽ tận cùng =76
Vậy 26^2019 có 2 chữ số tận cùng là 76.
Đặt a là số nhỏ nhất chia cho 5 dư 1 , chia 7 dư 5
Ta có : a chia cho 5 dư 1 \(\Rightarrow\)a + 9 chia hết cho 5 ( 1 )
a chia cho 7 dư 5 \(\Rightarrow\)a + 9 chia hết cho 7 ( 2 )
Từ ( 1 ) và ( 2 ) và n nhỏ nhất \(\Rightarrow\)a + 9 \(\in\)BCNN ( 5;7 ) = 35
a + 9 = 35 \(\Rightarrow\)a = 26