Cho phương trình 3mx - 2m + 1 = 0
a) Giải phương trình khi m = -3
b) Tìm m để phương trình có nghiệm x = -1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2
Lời giải:
a) Khi $m=1$ thì pt trở thành:
$x^2-2x-5=0$
$\Leftrightarrow (x-1)^2=6$
$\Rightarrow x=1\pm \sqrt{6}$
b) Để $x_1=3$ là nghiệm của pt thì:
$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$
Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$
c)
$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$
Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$
Khi đó:
Để $x_1^2+x_2^2=13$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$
$\Leftrightarrow (2m)^2-2(2m-7)=13$
$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$
d)
$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$
$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$
\(a,PT\Leftrightarrow\left(1-2m\right)x=m+4\)
Bậc nhất \(\Leftrightarrow1-2m\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)
\(b,x=2\Leftrightarrow2-4m-m-4=0\Leftrightarrow m=-\dfrac{2}{5}\\ c,m=5\Leftrightarrow-9x-9=0\Leftrightarrow x=-1\)
a, bạn tự làm
b, Để pt có 2 nghiệm khi
\(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\left(1\right)\\x_1x_2=2m-3\left(2\right)\end{matrix}\right.\)
Ta có \(x_1=2x_2\left(3\right)\)
Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2\left(m-1\right)\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2\left(m-1\right)}{3}\\x_1=\dfrac{4\left(m-1\right)}{3}\end{matrix}\right.\)
Thay vào (2) ta đc
\(\dfrac{8\left(m-1\right)^2}{9}=2m-3\Leftrightarrow8\left(m-1\right)^2=18m-27\)
\(\Leftrightarrow8m^2-16m+8=18m-27\Leftrightarrow8m^2-34m+35=0\)
\(\Leftrightarrow m=\dfrac{5}{2};m=\dfrac{7}{4}\)
a) Thay m = -3 vào pt, ta có :
\(-9x+6+1=0\)
\(\Leftrightarrow7-9x=0\)
\(\Leftrightarrow x=\dfrac{-7}{-9}=\dfrac{7}{9}\)
Vậy tập nghiệm của pt là \(S=\left\{\dfrac{7}{9}\right\}\)
b) \(3mx-2m+1=0\)
\(\Leftrightarrow3mx=2m-1\)
PT có nghiệm x = -1/3
\(\Rightarrow\)\(\dfrac{2m-1}{3m}=-\dfrac{1}{3}\)
\(\Leftrightarrow2m-1=-m\)
\(\Leftrightarrow3m=1\)
\(\Leftrightarrow m=\dfrac{1}{3}\)
a) thay m=-3 vào pt 3mx-2m+1=0ta đc
\(\Leftrightarrow\) -9x+6+1=0
\(\Leftrightarrow\)7-9x=0
\(\Leftrightarrow\)x=\(\dfrac{7}{9}\)
Vậy tập nghiệm S=\(\left\{\dfrac{7}{9}\right\}\)
b) 3mx-2m+1=0
\(\Leftrightarrow\)3mx=2m-1
Pt có tập nghiệm x=\(\dfrac{-1}{3}\)
\(\Rightarrow\)\(\dfrac{2m-1}{3m}\)=\(\dfrac{-1}{3}\)
\(\Leftrightarrow\)3m=1
\(\Leftrightarrow\)m=\(\dfrac{1}{3}\)